Author
Abstract
Investigators interested in model order estimation have tended to divide themselves into widely separated camps; this survey of the contributions of Schwarz, Wallace, Rissanen, and their coworkers attempts to build bridges between the various viewpoints, illuminating connections which may have previously gone unnoticed and clarifying misconceptions which seem to have propagated in the applied literature. Our tour begins with Schwarz's approximation of Bayesian integrals via Laplace's method. We then introduce the concepts underlying Rissanen's minimum description length principle via a Bayesian scenario with a known prior; this provides the groundwork for understanding his more complex non‐Bayesian MDL which employs a “universal” encoding of the integers. Rissanen's method of parameter truncation is contrasted with that employed in various versions of Wallace's minimum message length criteria. Rissanen's more recent notion of stochastic complexity is outlined in terms of Bernardo's information‐theoretic derivation of the Jeffreys prior. Il existe deux courants d'idées tres différents en recberche sur I' ordre de modéles.Ce papier est une revue des contributions de Schwarz, Wallace, Rissanen, et de leurs collaborateurs, Son but est de rapprocher leurs points de vue, d' établir de nouvelles connexions entre certains problémes, et de corriger certaines interprétations erronées qui sont apparues dans la litérature appliquée. Notre revue commence par I' approximation d' intégrales Bayesiennes au moyen de la méthode de Lapace,étudiée par Schwarz. Nous introduisons ensuite le principe de longueur descriptive minimale de Rissanen dans le cadre d' un scénario d' estimation Bayesienne. Ceci permet une nouvelle interpretation de ses méthodes d' estimation basées sur un codage “univasel” des entiers nabuels. Nous comparons la technique de paramétres de Rissanen avec cellcs qu'utilisc Wallace daar sa mtOaic du crib de longueur minimale d'un mtssage. Nous tcrminons cette étude par une présentation de la notion de complexité stochastique de Rissanen et ses connexions avec la distribution de Jeffreys, dont Bernardo a presenté une dérivation basée sur la théorie de l'infaamation.
Suggested Citation
Aaron D. Lanterman, 2001.
"Schwarz, Wallace, and Rissanen: Intertwining Themes in Theories of Model Selection,"
International Statistical Review, International Statistical Institute, vol. 69(2), pages 185-212, August.
Handle:
RePEc:bla:istatr:v:69:y:2001:i:2:p:185-212
DOI: 10.1111/j.1751-5823.2001.tb00456.x
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Jan G. De Gooijer & Ao Yuan, 2008.
"MDL Mean Function Selection in Semiparametric Kernel Regression Models,"
Tinbergen Institute Discussion Papers
08-046/4, Tinbergen Institute.
- Firdaus Janoos & Gregory Brown & Istvan Mórocz & William Wells, 2013.
"State-Space Analysis of Working Memory in Schizophrenia: An FBIRN Study,"
Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 279-307, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:69:y:2001:i:2:p:185-212. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.