Author
Abstract
Effective linkage detection and gene mapping requires analysis of data jointly on members of extended pedigrees, jointly at multiple genetic markers. Exact likelihood computation is then often infeasible, but Markov chain Monte Carlo (MCMC) methods permit estimation of posterior probabilities of genome sharing among relatives, conditional upon marker data. In principle, MCMC also permits estimation of linkage analysis location score curves, but in practice effective MCMC samplers are hard to find. Although the whole‐meiosis Gibbs sampler (M‐sampler) performs well in some cases, for extended pedigrees and tightly linked markers better samplers are needed. However, using the M‐sampler as a proposal distribution in a Metropolis‐Hastings algorithm does allow genetic interference to be incorporated into the analysis. La détection efficace de liaisons et la cartographie génique suppose l'analyse simultanée de données provenant de membre de lignées, étendues, cela pour plusieurs marqueurs génétiques. Un calcul de vraisemblance exact est souvent impossible, mais une méthode de Monte‐Carlo par chaines de Markov permet I'estimation de probabilités a posteriori conditionnelles probabilité qu' une partie de génomesoit commune à deux parents, sachant quels marqueurs génétiques; les caractérisent, La méthode permet aussi en principe d' estimer les courbes de score pour les differentes positions de liaisons, mains en partique, un échantillonneur efficace estdifficile à obtenir. Bien que I' échantilonneur de Gibbs pour la méiose, compléte done de bons résultats dans certains cas, pour des lignées étendues et des marqueurs étroitement liées, de meillecures procédures, d'échantillonnage sont nécessaires. Toutefois, utiliser un échantillonneur de Gibbs comme proposition (distribution initiale)dans un algorithme de Metropolis‐Hastings permet de prendre en complete les interférences, génétiques dans l'analyse.
Suggested Citation
E. A. Thompson, 2000.
"MCMC Estimation of Multi‐locus Genome Sharing and Multipoint Gene Location Scores,"
International Statistical Review, International Statistical Institute, vol. 68(1), pages 53-73, April.
Handle:
RePEc:bla:istatr:v:68:y:2000:i:1:p:53-73
DOI: 10.1111/j.1751-5823.2000.tb00387.x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:68:y:2000:i:1:p:53-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.