Author
Listed:
- Paolo Garonna
- Umberto Triacca
Abstract
Societal change, which takes a variety of directions and forms and in no way can be assimilated or reduced to a single dimension, is often accompanied by a perception of insufficient understanding and lack of control. There is a frustrated need for mastering complexity and instability, separating the voluntary from the involuntary, the intended from the unintended, opportunities from risks, getting to the real causes and dominating the uncertain implications of social change. Social change catches us unprepared and confused. In this context statistics are generally considered a fundamental instrument of knowledge, but also part of the problem! In the public debate and in the specialized literature, the ability to measure social phenomena through current statistics and indicators is increasingly questioned. Data‐it is claimed‐are lacking, particularly longitudinal data; their quality (accuracy, relevance, timeliness, comparability, etc.) should be improved; indicators do not provide early warning signals, policy performance evaluation, and a precise indication of outcomes. Statistics cannot be used as a reliable and timely basis for decision making by individuals, organizations, governments, and for understanding these decisions. In some cases, statistics have been accused of giving a misleading and false picture of reality: do we measure the real extent of social exclusion and unemployment? Do we fully capture the quality of life and the degradation of the environment? Mismeasurement has been deemed by some commentators as being responsible for the wrong focus in inflation and stabilization policies, science and technology, unemployment and poverty. The productivity paradox, the informal economy, failure to measure welfare and the quality of urban life are instances where statistics do not seem to provide complete and satisfactory answers to the demand for information and knowledge. Our paper illustrates how, quite independently of measurement techniques and data production processes, the inadequacy of the conceptual framework may explain mismeasurement in relation to complex (multidimensional) and dynamic social phenomena. It is then to social theories, explanations and interpretations that statisticians need to turn, in order to come to grips with the new challenges in social measurement. We will develop this thesis looking at a few cases where measurement issues can be connected to both theoretical and empirical difficulties. The statistical gap which reveals itself in the mismeasurement or difficult measurement of social phenomena is closely interconnected with the social science gap. Only close collaboration between statisticians and social scientists can bring about continuous advancement in social science and quality improvement in social statistics. Le changement sociale, qui prends directions et formes diverses et qui ne peut en aucune facon etre assimilé ou rédui à une seule dimension, est souvent accompagné par la perception d'une compréhension insuffisalte et d'une manque de controle. II ya un besoin frustré de maitriser la complexité et l'instabiliteé, tout en séparant le volontaire de l'involontaire, l'intentionnle du non voulu, les opportunités des risques, pour arriver aux causes réelles et dominer les implication uncertaines du changement sociale. Le changement sociale nous prends au dépourvu et confus Dan se contexte, la statistique est généralement considérée un instrument fondamental de la connaissance, mais aussi une partie meme du probléme! Dans les débats publics, ainsi que dans la litérature spécialisée la capacité de mésurer les phélnoménes au moyen de la statistique courante et les indicateurs vient de plus en plus mise endoute. Les données‐on dit‐manquent, en particulier les données longitudinelles; leur qualité (precision, pertinence, opportunité, comparabilité, etc.)doit etre améliorée les indicateurs ne fournissent pas des signaux d'alerte precoce, ni l'évaluation de l'accqmplissement des politiques, ni ne indication précise des résultats. Doncon ne peut pas se servir de la statistique comme base croyable et opportune pour le processus décisionnel des individus, des organisations et de gouvernements, ni pour comprende ces décisions. En quelques ca, la statistique a été accusée de donner une image trompeuse eet fausse de la réalité est‐ce que nous measurons l'extension réelle de l'exclusion sociale et du chomage? est‐ce que nous capturons entiérement la qualité de la vie et la dtgradation de I'environnement? La mauvaise mesure a ktk jug par quelques commentatem comme la responsable de la fausse mise au point de I'inflation et des politiques de stabilisation, de la science et de la technologie, du chhage et de la pauvretk. Le paradoxe de la productivitk, I'tconomie informelle, le dtfaut de mesurer le bien‐Stre et la qualitt de la vie urbaine. se sont des exemples oil la statistique ne semble pas apporter de kponses complbtes et satisfaisantes ?J la demande d'information et de connaissance. Notre thbse dtmontre que, d'une fqon tout 21 fait independante des mesures techniques et des processus de production des donnks, l'ttat incomplet du cadre cenceptuel peut expliquer la mauvaise mesure relativement h phenornbnes sociaux complexes (multidimensionnels) et dynamiques. C'est alors aux thtories sociales, aux explications et aux interprttations. que les statisticiens doivent se diriger pour en venir aux prises avec les nouveaux dkfis de la mesure sociale. Nous dtvelopperons cette these h I'aide de I'analyse de quelques cas ou la question de la mesure peut se rapporter hdes difficultks aussi bien thtoretiques que empiriques. Le. trou statistique, qui se fait danc connaitre a travers la rnauvaise mesure ou la mesure difficile des phenomtnes sociaux, est Ttroitement lit au trou de la science sociale. Seulement la collaboration entre les statisticiens et les sanvants sociaux peut amener un progs continu de la science sociale et une amklioration de la qualitt de la statistique sociale.
Suggested Citation
Paolo Garonna & Umberto Triacca, 1999.
"Social Change: Measurement and Theory,"
International Statistical Review, International Statistical Institute, vol. 67(1), pages 49-62, April.
Handle:
RePEc:bla:istatr:v:67:y:1999:i:1:p:49-62
DOI: 10.1111/j.1751-5823.1999.tb00380.x
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Takashi Kamihigashi & Kazuhiro Seki & Masahiko Shibamoto, 2017.
"Measuring Social Change Using Text Data: A Simple Distributional Approach,"
Discussion Paper Series
DP2017-16, Research Institute for Economics & Business Administration, Kobe University, revised Jul 2017.
- Carlson, Beverley A., 2001.
"Education and the labour market in Latin America: why measurement is important and what it tells us about policies, reforms and performance,"
Desarrollo Productivo
4497, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:67:y:1999:i:1:p:49-62. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.