IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v9y2005i4p189-203.html
   My bibliography  Save this article

Assessing the Eco‐efficiency of End‐of‐Pipe Technologies with the Environmental Cost Efficiency Indicator

Author

Listed:
  • Stefanie Hellweg
  • Gabor Doka
  • Göran Finnveden
  • Konrad Hungerbühler

Abstract

The concept of eco‐efficiency is increasingly being applied to judge the combined environmental and economic performance of product systems, processes, and/or companies. Ecoefficiency is often defined as the ratio of economic value added to environmental impact added. This definition is not appropriate for end‐of‐pipe treatment technologies because these technologies aim at improving the environmental performance of technical processes at the cost of financial expense. Therefore, an indicator for the assessment of end‐of‐pipe technologies has been proposed. This indicator, called environmental cost efficiency (ECE), is defined as the ratio of net environmental benefits to the difference in costs. ECE is applied to four end‐of‐pipe technologies for the treatment of municipal solid waste: sanitary landfill, mechanical‐biological treatment, modern grate incineration, and a staged thermal process (pyrolysis and gasification). A life‐cycle assessment was performed on these processes to quantify the net environmental benefit. Moreover, the approximate net costs (costs minus benefits) were quantified. The results show that, relative to grate incineration, sanitary landfills and mechanical‐biological treatment are less costly but environmentally more harmful. We calculated the ECE for all combinations of technologies. The results indicate that the staged thermal process may be the most environmentally cost‐efficient alternative to all other treatment technologies in the long run, followed by mechanical‐biological treatment and grate incineration.

Suggested Citation

  • Stefanie Hellweg & Gabor Doka & Göran Finnveden & Konrad Hungerbühler, 2005. "Assessing the Eco‐efficiency of End‐of‐Pipe Technologies with the Environmental Cost Efficiency Indicator," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 189-203, October.
  • Handle: RePEc:bla:inecol:v:9:y:2005:i:4:p:189-203
    DOI: 10.1162/108819805775247864
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/108819805775247864
    Download Restriction: no

    File URL: https://libkey.io/10.1162/108819805775247864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciroth, Andreas, 2009. "Cost data quality considerations for eco-efficiency measures," Ecological Economics, Elsevier, vol. 68(6), pages 1583-1590, April.
    2. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    3. Xiaohong Zhuang & Zhuyuan Li & Run Zheng & Sanggyun Na & Yulin Zhou, 2021. "Research on the Efficiency and Improvement of Rural Development in China: Based on Two-Stage Network SBM Model," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    4. Meylan, Grégoire & Seidl, Roman & Spoerri, Andy, 2013. "Transitions of municipal solid waste management. Part I: Scenarios of Swiss waste glass-packaging disposal," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 8-19.
    5. Van Meensel, Jef & Lauwers, Ludwig H. & Van Huylenbroeck, Guido & Van Passel, Steven, 2009. "Exploring production-theoretical insights for analyzing trade-offs between economic performance and environmental pressure at firm level," 2009 Conference, August 16-22, 2009, Beijing, China 51725, International Association of Agricultural Economists.
    6. Kounetas, Konstantinos & Stergiou, Eirini, 2020. "European industrial eco-efficiency under different pollutants' scenarios and heterogeneity structures. Is there a definite direction?," MPRA Paper 98583, University Library of Munich, Germany.
    7. Ana Ramos & Carlos Afonso Teixeira & Abel Rouboa, 2018. "Environmental Analysis of Waste-to-Energy—A Portuguese Case Study," Energies, MDPI, vol. 11(3), pages 1-26, March.
    8. Na Yang & Fangling Li & Yang Liu & Tao Dai & Qiao Wang & Jiebao Zhang & Zhiguang Dai & Boping Yu, 2022. "Environmental and Economic Life-Cycle Assessments of Household Food Waste Management Systems: A Comparative Review of Methodology and Research Progress," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    9. Marileena Koskela & Jarmo Vehmas, 2012. "Defining Eco‐efficiency: A Case Study on the Finnish Forest Industry," Business Strategy and the Environment, Wiley Blackwell, vol. 21(8), pages 546-566, December.
    10. Meylan, Grégoire & Ami, Helen & Spoerri, Andy, 2014. "Transitions of municipal solid waste management. Part II: Hybrid life cycle assessment of Swiss glass-packaging disposal," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 16-27.
    11. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Examining eco-efficiency convergence of European Industries.The existence of technological spillovers within a metafrontier framework," MPRA Paper 94286, University Library of Munich, Germany.
    12. Emily Grubert & Jennifer Stokes-Draut, 2020. "Mitigation Life Cycle Assessment: Best Practices from LCA of Energy and Water Infrastructure That Incurs Impacts to Mitigate Harm," Energies, MDPI, vol. 13(4), pages 1-17, February.
    13. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    14. Van Meensel, Jef & Lauwers, Ludwig & Van Huylenbroeck, Guido & Van Passel, Steven, 2010. "Comparing frontier methods for economic-environmental trade-off analysis," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1027-1040, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:9:y:2005:i:4:p:189-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.