IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v7y2003i3-4p75-91.html
   My bibliography  Save this article

Using Life‐Cycle Assessment in Process Design

Author

Listed:
  • Edgar Gasafi
  • Lutz Meyer
  • Liselotte Schebek

Abstract

This article presents the application of life‐cycle assessment in early phases of process design in the context of technology that employs a bio‐based material. The goal is to identify hot spots in the process chains with regard to environmental impacts by performing a dominance analysis. By focusing his activities on the hot spots identified, the designer is given the opportunity to efficiently improve environmental performance. This approach is illustrated for the case of supercritical water gasification, a novel technology for the treatment of organic feedstock with high moisture content. In the reactor under supercritical conditions, organic components are converted into a high‐caloric synthesis gas, with hydrogen, methane, and carbon dioxide as the main products. The data used for the assessment are obtained from laboratory tests and the literature, completed by assumptions for missing data. The scope of assessment ranges from the extraction of raw materials to the product, that is, hydrogen (cradle to gate) with sewage sludge of a municipal wastewater treatment plant used as feedstock. The assessment identifies the main sources of environmental impacts. The predominant process step in terms of global warming potential is the supply of the gasification process with additional heat. The production of a blending agent in the dewatering step is the main source of the impact category of acidification, whereas the wastewater treatment plant is the origin of emissions that lead to eutrophication. The revealed sources are analyzed further and options for reducing the environmental impacts are discussed.

Suggested Citation

  • Edgar Gasafi & Lutz Meyer & Liselotte Schebek, 2003. "Using Life‐Cycle Assessment in Process Design," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 75-91, July.
  • Handle: RePEc:bla:inecol:v:7:y:2003:i:3-4:p:75-91
    DOI: 10.1162/108819803323059415
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/108819803323059415
    Download Restriction: no

    File URL: https://libkey.io/10.1162/108819803323059415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cui & Jin, Hui & Peng, Pai & Chen, Jia, 2019. "Thermodynamics and LCA analysis of biomass supercritical water gasification system using external recycle of liquid residual," Renewable Energy, Elsevier, vol. 141(C), pages 1117-1126.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:7:y:2003:i:3-4:p:75-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.