Author
Listed:
- Nicolas Hübner
- Justus Caspers
- Vlad Constantin Coroamă
- Matthias Finkbeiner
Abstract
Rapid advancements in artificial intelligence (AI) are driving transformative changes in many areas, with significant environmental implications. Yet, environmental assessments for specific applications are scarce. This study presents an in‐depth life cycle assessment of “Foodforecast,” a machine learning (ML) cloud service designed to reduce food waste in bakeries by optimizing sales forecasting. It covers four impact categories: global warming, abiotic resource depletion, cumulative energy demand, and freshwater eutrophication. The assessment includes both the direct environmental impacts of the ML model and the underlying system hardware, as well as the indirect benefits of avoided bakery returns compared to traditional ordering methods, using real‐world case study data. In 2022, “Foodforecast” led to an average 30% reduction in bakery returns, primarily bread and rolls, according to sales reports. The associated environmental benefits significantly outweighed the system's direct impacts by one to three orders of magnitude across impact categories and return utilization scenarios. The study identifies support activities such as service maintenance during deployment as major direct impact factors, surpassing those from cloud compute for ML operations. Data processing and inference dominate the latter, while the much‐discussed ML training plays a minor role. The environmental consequences of AI are complex and dual sided. This case study demonstrates that AI might provide environmental benefits in certain contexts, yet results are constrained by methodological challenges and data uncertainties. There remains a need for further holistic LCAs across different ML applications to inform decision‐making processes and ultimately guide the responsible use of AI.
Suggested Citation
Nicolas Hübner & Justus Caspers & Vlad Constantin Coroamă & Matthias Finkbeiner, 2024.
"Machine‐learning‐based demand forecasting against food waste: Life cycle environmental impacts and benefits of a bakery case study,"
Journal of Industrial Ecology, Yale University, vol. 28(5), pages 1117-1131, October.
Handle:
RePEc:bla:inecol:v:28:y:2024:i:5:p:1117-1131
DOI: 10.1111/jiec.13528
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:28:y:2024:i:5:p:1117-1131. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.