IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v28y2024i3p469-481.html
   My bibliography  Save this article

Mass, enthalpy, and chemical‐derived emission flows in mineral processing

Author

Listed:
  • Seth Kane
  • Sabbie A. Miller

Abstract

The production of materials from mineral resources is a significant contributor to anthropogenic CO2 emissions. This contribution is driven primarily by chemical CO2 emissions from the conversion of mineral resources and emissions tied to energy demands for material processing. In this work, we synthesize the thermodynamically required enthalpy and chemically derived emissions of mineral processing and consumption in the United States. We quantify mass, enthalpy, and emissions flows for minerals described by the US Geological Survey, with 882 mass flows and 155 chemical reactions analyzed. In total, 503 PJ of enthalpy is thermodynamically required for 398 Mt of chemically converted material consumption in the United States, resulting in 129 Mt of chemically derived CO2 emissions. Additionally, 249 PJ of fuel resources such as coke are stoichiometrically required for the chemical conversion of minerals. These enthalpy requirements and CO2 emissions are primarily from high‐mass consumption materials such as cement, carbon steel, fertilizer, and aluminum. Cumulatively, the dataset synthesized in this work provides a complete view of the chemical requirements of mineral processing and can aid in guiding decarbonization or sustainable growth in critical minerals sectors, including construction materials and materials for energy storage or generation.

Suggested Citation

  • Seth Kane & Sabbie A. Miller, 2024. "Mass, enthalpy, and chemical‐derived emission flows in mineral processing," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 469-481, June.
  • Handle: RePEc:bla:inecol:v:28:y:2024:i:3:p:469-481
    DOI: 10.1111/jiec.13476
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13476
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiva Zargar & Yuan Yao & Qingshi Tu, 2022. "A review of inventory modeling methods for missing data in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1676-1689, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kofi Armah Boakye-Yiadom & Alessio Ilari & Daniele Duca, 2022. "Greenhouse Gas Emissions and Life Cycle Assessment on the Black Soldier Fly ( Hermetia illucens L.)," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    2. Giusilene Costa de Souza Pinho & João Luiz Calmon, 2023. "LCA of Wood Waste Management Systems: Guiding Proposal for the Standardization of Studies Based on a Critical Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:28:y:2024:i:3:p:469-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.