IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v28y2024i2p247-261.html
   My bibliography  Save this article

City‐scale assessment of the material and environmental footprint of buildings using an advanced building information model: A case study from Canberra, Australia

Author

Listed:
  • Natthanij Soonsawad
  • Raymundo Marcos‐Martinez
  • Heinz Schandl

Abstract

As cities grow, demand for urban materials is set to rise. Meeting sustainability targets will require transformative changes to how cities are constructed. Yet, accurate information on embodied building materials and their environmental impacts at the city scale is still lacking. We use Light Detection and Ranging data, building archetype information, and statistical models to estimate the embodied materials in buildings in Canberra, Australia, and their energy, carbon, and water footprint. In 2015, 57 million tonnes (Mt) of materials were embodied in 140,805 buildings. By weight, concrete was the most used material (44%), followed by sand and stone (32%), and ceramics (11%). Current population growth and building construction trends indicate a need for 2.4 times the building materials stock of 2015 by 2060. Producing such materials would require 1.6 thousand TJ of energy and 793 thousand megaliters of water and emit 48 Mt of CO2e—an environmental footprint 1.6 times the one in 2015. If the additional population were to live only in new single houses, material demand would be 4% higher than under current trends and the environmental footprint 5% higher. Housing new residents in low‐rise apartments would reduce from current trends the material demand by 5% and the environmental footprint by 12%. Using only apartments of four or more stories would reduce material demand by 28% and the environmental footprint by 14%. This research can inform circular economy efforts to improve building materials management by helping estimate the implications of alternative configurations of the urban built environment.

Suggested Citation

  • Natthanij Soonsawad & Raymundo Marcos‐Martinez & Heinz Schandl, 2024. "City‐scale assessment of the material and environmental footprint of buildings using an advanced building information model: A case study from Canberra, Australia," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 247-261, April.
  • Handle: RePEc:bla:inecol:v:28:y:2024:i:2:p:247-261
    DOI: 10.1111/jiec.13456
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13456
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hattori, Ryoma & Horie, Sadataka & Hsu, Feng-Chi & Elvidge, Chirstopher D. & Matsuno, Yasunari, 2014. "Estimation of in-use steel stock for civil engineering and building using nighttime light images," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 1-5.
    2. Zhi Cao & Eric Masanet, 2022. "Material efficiency to tackle the sand crisis," Nature Sustainability, Nature, vol. 5(5), pages 370-371, May.
    3. Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
    4. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    5. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    6. Tomer Fishman & Heinz Schandl & Hiroki Tanikawa & Paul Walker & Fridolin Krausmann, 2014. "Accounting for the Material Stock of Nations," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 407-420, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    2. Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.
    3. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    4. Rafaela Tirado & Adélaïde Aublet & Sylvain Laurenceau & Mathieu Thorel & Mathilde Louërat & Guillaume Habert, 2021. "Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    5. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.
    6. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.
    7. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    8. Charles Gillott & Will Mihkelson & Maud Lanau & Dave Cheshire & Danielle Densley Tingley, 2023. "Developing Regenerate: A circular economy engagement tool for the assessment of new and existing buildings," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 423-435, April.
    9. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    10. Yupeng Liu & Wei-Qiang Chen & Tao Lin & Lijie Gao, 2019. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?," Resources, MDPI, vol. 8(1), pages 1-8, March.
    11. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    12. Babak Ebrahimi & Leonardo Rosado & Holger Wallbaum, 2022. "Machine learning‐based stocks and flows modeling of road infrastructure," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 44-57, February.
    13. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    14. Benjamin Sprecher & Teun Johannes Verhagen & Marijn Louise Sauer & Michel Baars & John Heintz & Tomer Fishman, 2022. "Material intensity database for the Dutch building stock: Towards Big Data in material stock analysis," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 272-280, February.
    15. Miatto, Alessio & Schandl, Heinz & Wiedenhofer, Dominik & Krausmann, Fridolin & Tanikawa, Hiroki, 2017. "Modeling material flows and stocks of the road network in the United States 1905–2015," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 168-178.
    16. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    17. Lwin, Cherry Myo & Dente, Sébastien M.R. & Wang, Tao & Shimizu, Toshiyuki & Hashimoto, Seiji, 2017. "Material stock disparity and factors affecting stocked material use efficiency of sewer pipelines in Japan," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 135-142.
    18. Shogo Eguchi, 2017. "Accounting for resource accumulation in Japanese prefectures: an environmental efficiency analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-22, December.
    19. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    20. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:28:y:2024:i:2:p:247-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.