IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i1p248-262.html
   My bibliography  Save this article

Site‐specific life cycle assessment of a pilot floating offshore wind farm based on suppliers’ data and geo‐located wind data

Author

Listed:
  • Baptiste Poujol
  • Anne Prieur‐Vernat
  • Jean Dubranna
  • Romain Besseau
  • Isabelle Blanc
  • Paula Pérez‐López

Abstract

Renewable energy systems are essential in coming years to ensure an efficient energy supply while maintaining environmental protection. Despite having low environmental impacts during operation, other phases of the life cycle need to be accounted for. This study presents a geo‐located life cycle assessment of an emerging technology, namely, floating offshore wind farms. It is developed and applied to a pilot project in the Mediterranean Sea. The materials inventory is based on real data from suppliers and coupled to a parameterized model which exploits a geographic information system wind database to estimate electricity production. This multi‐criteria assessment identified the extraction and transformation of materials as the main contributor to environmental impacts such as climate change (70% of the total 22.3 g CO2 eq/kWh), water use (73% of 6.7 L/kWh), and air quality (76% of 25.2 mg PM2.5/kWh), mainly because of the floater's manufacture. The results corroborate the low environmental impact of this emerging technology compared to other energy sources. The electricity production estimates, based on geo‐located wind data, were found to be a critical component of the model that affects environmental performance. Sensitivity analyses highlighted the importance of the project's lifetime, which was the main parameter responsible for variations in the analyzed categories. Background uncertainties should be analyzed but may be reduced by focusing data collection on significant contributors. Geo‐located modeling proved to be an effective technique to account for geographical variability of renewable energy technologies and contribute to decision‐making processes leading to their development.

Suggested Citation

  • Baptiste Poujol & Anne Prieur‐Vernat & Jean Dubranna & Romain Besseau & Isabelle Blanc & Paula Pérez‐López, 2020. "Site‐specific life cycle assessment of a pilot floating offshore wind farm based on suppliers’ data and geo‐located wind data," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 248-262, February.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:248-262
    DOI: 10.1111/jiec.12989
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12989
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    2. Vanegas-Cantarero, María M. & Pennock, Shona & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Beyond LCOE: A multi-criteria evaluation framework for offshore renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Min-Chih Hsu & Hsuan-Shih Lee, 2023. "Applying AHP-IFNs-DEMATEL in Establishing a Supplier Selection Model: A Case Study of Offshore Wind Power Companies in Taiwan," Energies, MDPI, vol. 16(11), pages 1-23, June.
    4. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).
    5. Ferreira, Victor J. & Benveniste, Gabriela & Rapha, José I. & Corchero, Cristina & Domínguez-García, Jose Luis, 2023. "A holistic tool to assess the cost and environmental performance of floating offshore wind farms," Renewable Energy, Elsevier, vol. 216(C).
    6. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:248-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.