IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i1p234-247.html
   My bibliography  Save this article

Environmental and economic impacts of solar‐powered integrated greenhouses

Author

Listed:
  • Joseph A. Hollingsworth
  • Eshwar Ravishankar
  • Brendan O'Connor
  • Jeremiah X. Johnson
  • Joseph F. DeCarolis

Abstract

Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2 eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production across Arizona to be $3.43, $3.38, and $3.64 per kg of tomato for the conventional, adjacent PV and SPRING system, respectively.

Suggested Citation

  • Joseph A. Hollingsworth & Eshwar Ravishankar & Brendan O'Connor & Jeremiah X. Johnson & Joseph F. DeCarolis, 2020. "Environmental and economic impacts of solar‐powered integrated greenhouses," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 234-247, February.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:234-247
    DOI: 10.1111/jiec.12934
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12934
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández, Eduardo F. & Villar-Fernández, Antonio & Montes-Romero, Jesús & Ruiz-Torres, Laura & Rodrigo, Pedro M. & Manzaneda, Antonio J. & Almonacid, Florencia, 2022. "Global energy assessment of the potential of photovoltaics for greenhouse farming," Applied Energy, Elsevier, vol. 309(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:1:p:234-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.