IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i5p1052-1061.html
   My bibliography  Save this article

Working conditions in hydrogen production: A social life cycle assessment

Author

Listed:
  • Jasmin Werker
  • Christina Wulf
  • Petra Zapp

Abstract

Social impacts of novel technology can, parallel to environmental and economic consequences, influence its sustainability. By analyzing the case of hydrogen production by advanced alkaline water electrolysis (AEL) from a life cycle perspective, this paper illustrates the social implications of the manufacturing of the electrolyzer and hydrogen production when installed in Germany, Austria, and Spain. This paper complements previous environmental and economic assessments, which selected this set of countries based on their different structures in electricity production. The paper uses a mixed method design to analyze the social impact for the workers along the process chain. Appropriate indicators related to working conditions are selected on the basis of the UN Agenda 2030 Sustainable Development Goals. The focus on workers is chosen as a first example to test the relatively new Product Social Impact Life Cycle Assessment (PSILCA) database version 2.0. The results of the quantitative assessment are then complemented and compared through an investigation of the underlying raw data and a qualitative literature analysis. Overall, advanced AEL is found to have least social impact along the German process chain, followed by the Spanish and the Austrian. All three process chains show impacts on global upstream processes. In order to reduce social impact and ultimately contribute to Sustainable Development, policymakers and industry need to work together to further improve certain aspects of working conditions in different locations, particularly within global upstream processes.

Suggested Citation

  • Jasmin Werker & Christina Wulf & Petra Zapp, 2019. "Working conditions in hydrogen production: A social life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1052-1061, October.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:5:p:1052-1061
    DOI: 10.1111/jiec.12840
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12840
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somayeh Rezaei Kalvani & Amir Hamzah Sharaai & Ibrahim Kabir Abdullahi, 2021. "Social Consideration in Product Life Cycle for Product Social Sustainability," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    2. Tsalidis, Georgios Archimidis & de Santo, Elena & Gallart, Jose Jorge Espí & Corberá, Joan Berzosa & Blanco, Frederic Clarens & Pesch, Udo & Korevaar, Gijsbert, 2021. "Developing social life cycle assessment based on corporate social responsibility: A chemical process industry case regarding human rights," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    3. Maarten Koese & Carlos F. Blanco & Vicente B. Vert & Martina G. Vijver, 2023. "A social life cycle assessment of vanadium redox flow and lithium‐ion batteries for energy storage," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 223-237, February.
    4. Stefan Gold & Thomas Chesney & Tim Gruchmann & Alexander Trautrims, 2020. "Diffusion of labor standards through supplier–subcontractor networks: An agent‐based model," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1274-1286, December.
    5. Jianing Wei & Jixiao Cui & Yinan Xu & Jinna Li & Xinyu Lei & Wangsheng Gao & Yuanquan Chen, 2022. "Social Life Cycle Assessment of Major Staple Grain Crops in China," Agriculture, MDPI, vol. 12(4), pages 1-22, April.
    6. Tian, Xueyu & You, Fengqi, 2024. "Broaden sustainable design and optimization of decarbonized campus Energy systems with scope 3 emissions accounting and social ramification analysis," Applied Energy, Elsevier, vol. 373(C).
    7. Georgios Archimidis Tsalidis, 2020. "Integrating Individual Behavior Dimension in Social Life Cycle Assessment in an Energy Transition Context," Energies, MDPI, vol. 13(22), pages 1-20, November.
    8. Christina Wulf & Petra Zapp & Andrea Schreiber & Wilhelm Kuckshinrichs, 2021. "Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    9. Martins, Flavio Pinheiro & De-León Almaraz, Sofía & Botelho Junior, Amilton Barbosa & Azzaro-Pantel, Catherine & Parikh, Priti, 2024. "Hydrogen and the sustainable development goals: Synergies and trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    10. Zafar, Imaad & Stojceska, Valentina & Tassou, Savvas, 2024. "Social sustainability assessments of industrial level solar energy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:5:p:1052-1061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.