IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v22y2018i4p839-852.html
   My bibliography  Save this article

Thermodynamic Approach to Evaluate the Criticality of Raw Materials and Its Application through a Material Flow Analysis in Europe

Author

Listed:
  • Guiomar Calvo
  • Alicia Valero
  • Antonio Valero

Abstract

This paper makes a review of current raw material criticality assessment methodologies and proposes a new approach based on the second law of thermodynamics. This is because conventional methods mostly focus on supply risk and economic importance leaving behind relevant factors, such as the physical quality of substances. The new approach is proposed as an additional dimension for the criticality assessment of raw materials through a variable denoted “thermodynamic rarity,” which accounts for the exergy cost required to obtain a mineral commodity from bare rock, using prevailing technology. Accordingly, a given raw material will be thermodynamically rare if it is: (1) currently energy intensive to obtain and (2) scarce in nature. If a given commodity presents a high risk in two of the three dimensions (economic importance, supply risk, and thermodynamic rarity), it is proposed to be critical. As a result, a new critical material list is presented, adding to the 2014 criticality list of the European Commission (EC) Li, Ta, Te, V, and Mo. With this new list and using Sankey diagrams, a material flow analysis has been carried out for Europe (EU‐28) for 2014, comparing the results when using tonnage and thermodynamic rarity as units of measure. Through the latter, one can put emphasis on the quality and not only on the quantity of minerals traded and domestically produced in the region, thereby providing a tool for improving resource management.

Suggested Citation

  • Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Thermodynamic Approach to Evaluate the Criticality of Raw Materials and Its Application through a Material Flow Analysis in Europe," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 839-852, August.
  • Handle: RePEc:bla:inecol:v:22:y:2018:i:4:p:839-852
    DOI: 10.1111/jiec.12624
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12624
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Tianjiao & Wang, Anjian & Xing, Wanli & Li, Ying & Zhou, Yanjing, 2019. "Assessing mineral extraction and trade in China from 1992 to 2015: A comparison of material flow analysis and exergoecological approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    2. Disna Eheliyagoda & Xianlai Zeng & Jinhui Li, 2020. "A method to assess national metal criticality: the environment as a foremost measurement," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-12, December.
    3. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    4. Christine L. Thomas & Nedal T. Nassar & John H. DeYoung, 2022. "Assessing mineral supply concentration from different perspectives through a case study of zinc," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 607-616, December.
    5. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.
    6. Charalampos Michalakakis & Jonathan M. Cullen, 2022. "Dynamic exergy analysis: From industrial data to exergy flows," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 12-26, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:22:y:2018:i:4:p:839-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.