IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v22y2018i2p288-299.html
   My bibliography  Save this article

Effects on Greenhouse Gas Emissions of Introducing Electric Vehicles into an Electricity System with Large Storage Capacity

Author

Listed:
  • Rita Garcia
  • Fausto Freire
  • Roland Clift

Abstract

Under some circumstances, electric vehicles (EVs) can reduce overall environmental impacts by displacing internal combustion engine vehicles (ICEVs) and by enabling more intermittent renewable energy sources (RES) by charging with surplus power in periods of low demand. However, the net effects on greenhouse gas (GHG) emissions of adding EVs into a national or regional electricity system are complex and, for a system with significant RES, are affected by the presence of storage capacity, such as pumped hydro storage (PHS). This article takes the Portuguese electricity system as a specific example, characterized by relatively high capacities of wind generation and PHS. The interactions between EVs and PHS are explored, using life cycle assessment to compare changes in GHG emissions for different scenarios with a fleet replacement model to describe the introduction of EVs. Where there is sufficient storage capacity to ensure that RES capacity is exploited without curtailment, as in Portugal, any additional demand, such as introduction of EVs, must be met by the next marginal technology. Whether this represents an average increase or decrease in GHG emissions depends on the carbon intensity of the marginal generating technology and on the fuel efficiency of the ICEVs displaced by the EVs, so that detailed analysis is needed for any specific energy system, allowing for future technological improvements. A simple way to represent these trade†offs is proposed as a basis for supporting strategic policies on introduction of EVs.

Suggested Citation

  • Rita Garcia & Fausto Freire & Roland Clift, 2018. "Effects on Greenhouse Gas Emissions of Introducing Electric Vehicles into an Electricity System with Large Storage Capacity," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 288-299, April.
  • Handle: RePEc:bla:inecol:v:22:y:2018:i:2:p:288-299
    DOI: 10.1111/jiec.12593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12593
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    2. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    3. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    4. Isabella Yunfei Zeng & Jingrui Chen & Ziheng Niu & Qingfei Liu & Tian Wu, 2022. "The GHG Emissions Assessment of Online Car-Hailing Development under the Intervention of Evaluation Policies in China," Sustainability, MDPI, vol. 14(3), pages 1-25, February.
    5. Rostad Sæther, Simen, 2022. "Mobility at the crossroads – Electric mobility policy and charging infrastructure lessons from across Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 144-159.
    6. Tu, Ran & Gai, Yijun (Jessie) & Farooq, Bilal & Posen, Daniel & Hatzopoulou, Marianne, 2020. "Electric vehicle charging optimization to minimize marginal greenhouse gas emissions from power generation," Applied Energy, Elsevier, vol. 277(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:22:y:2018:i:2:p:288-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.