IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v17y2013i4p542-554.html
   My bibliography  Save this article

Transforming the Norwegian Dwelling Stock to Reach the 2 Degrees Celsius Climate Target

Author

Listed:
  • Stefan Pauliuk
  • Karin Sjöstrand
  • Daniel B. Müller

Abstract

Residential buildings account for about one‐third of the final energy demand in Norway. Many cost‐effective measures for reducing heat losses in buildings are known, and their implementation may make the building sector one of the largest contributors to climate change mitigation. To determine the sectoral emission reduction potential, we model a complete transformation of the dwelling stock by 2050 by applying both renovation and reconstruction with different energy standards. We propose a new dynamic stock model with an optimization routine to identify and prioritize buildings with the highest energy saving potential. We combine material flow analysis (MFA) and life cycle assessment (LCA) techniques to extend the sectoral boundary beyond direct household emissions. Despite an expected population growth of almost 50% between 2000 and 2050, sectoral carbon emissions in that period may drop between 30% and 40% for scenarios where the stock is completely transformed by either reconstruction or renovation to the passive house standard. Due to its lower upstream impact, renovation leads to a lower sectoral carbon footprint than reconstruction. Full transformation, however, is not sufficient to achieve an emissions reduction of 50% or more, as required on average to limit global warming to 2 degrees Celsius, because hot water generation, appliances, and lighting will dominate the sectoral footprint once the stock has been transformed. A first estimate of the additional impact of realistic energy efficiency and lifestyle changes in the nonheating part of the sector reveals a maximal total reduction potential of about 75%.

Suggested Citation

  • Stefan Pauliuk & Karin Sjöstrand & Daniel B. Müller, 2013. "Transforming the Norwegian Dwelling Stock to Reach the 2 Degrees Celsius Climate Target," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 542-554, August.
  • Handle: RePEc:bla:inecol:v:17:y:2013:i:4:p:542-554
    DOI: 10.1111/j.1530-9290.2012.00571.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2012.00571.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2012.00571.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    2. Lin, Chen & Liu, Gang & Müller, Daniel B., 2017. "Characterizing the role of built environment stocks in human development and emission growth," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 67-72.
    3. Alessio Mastrucci & Bas Ruijven & Edward Byers & Miguel Poblete-Cazenave & Shonali Pachauri, 2021. "Global scenarios of residential heating and cooling energy demand and CO2 emissions," Climatic Change, Springer, vol. 168(3), pages 1-26, October.
    4. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Hietaharju, Petri & Pulkkinen, Jari & Ruusunen, Mika & Louis, Jean-Nicolas, 2021. "A stochastic dynamic building stock model for determining long-term district heating demand under future climate change," Applied Energy, Elsevier, vol. 295(C).
    6. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    7. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    8. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    9. Olaya, Yris & Vásquez, Felipe & Müller, Daniel B., 2017. "Dwelling stock dynamics for addressing housing deficit," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 187-199.
    10. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:4:p:542-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.