IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v17y2013i1p79-89.html
   My bibliography  Save this article

Methodological Challenges in Volumetric and Impact‐Oriented Water Footprints

Author

Listed:
  • Markus Berger
  • Matthias Finkbeiner

Abstract

This work identifies shortcomings in water footprinting and discusses whether the water footprint should be a volumetric or impact‐oriented index. A key challenge is the current definition of water consumption according to which evaporated water is regarded as lost for the originating watershed per se. Continental evaporation recycling rates of up to 100% within short time and length scales show that this definition is not generally valid. Also, the inclusion of land use effects on the hydrological balance is questionable, as land transformation often leads to higher water availability due to locally increased runoff. Unless potentially negative consequences, such as flooding or waterlogging, and adverse effects on the global water cycle are considered, water credits from land transformation seem unjustified. Most impact assessment methods use ratios of annual withdrawal or consumption to renewability rates to denote local water scarcity. As these ratios are influenced by two metrics—withdrawal and availability—arid regions can be regarded as uncritical if only small fractions of the limited renewable supplies are used. Besides neglecting sensitivities to additional water uses, such indicators consider neither ground nor surface water stocks, which can buffer water shortages temporally. Authors favoring volumetric indicators claim that global freshwater appropriation is more important than local impacts, easier to determine, and less error prone than putting complex ecological interaction into mathematical models. As shown in an example, volumetric water footprints can be misleading without additional interpretation because numerically smaller footprints can cause higher impacts.

Suggested Citation

  • Markus Berger & Matthias Finkbeiner, 2013. "Methodological Challenges in Volumetric and Impact‐Oriented Water Footprints," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 79-89, February.
  • Handle: RePEc:bla:inecol:v:17:y:2013:i:1:p:79-89
    DOI: 10.1111/j.1530-9290.2012.00495.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2012.00495.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2012.00495.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Zhang & Jinglan Hong & Tianzuo Zhang & Xu Tian & Yong Geng & Wei Chen & Yijie Zhai & Wenjing Liu & Xiaoxu Shen & Yueyang Bai, 2023. "Environmental footprints of soybean production in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9047-9065, September.
    2. Iulia Dolganova & Natalia Mikosch & Markus Berger & Montserrat Núñez & Andrea Müller-Frank & Matthias Finkbeiner, 2019. "The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water Scarcity," Resources, MDPI, vol. 8(3), pages 1-11, August.
    3. Zhai, Yijie & Bai, Yueyang & Wu, Zhen & Hong, Jinglan & Shen, Xiaoxu & Xie, Fei & Li, Xiangzhi, 2022. "Grain self-sufficiency versus environmental stress: An integration of system dynamics and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Zongyong Zhang & Junguo Liu & Bofeng Cai & Yuli Shan & Heran Zheng & Xian Li & Xukun Li & Dabo Guan, 2020. "City‐level water withdrawal in China: Accounting methodology and applications," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 951-964, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:1:p:79-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.