IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v16y2012is1ps182-s194.html
   My bibliography  Save this article

Sources of Variation in Life Cycle Assessments of Desktop Computers

Author

Listed:
  • Paul Teehan
  • Milind Kandlikar

Abstract

Life cycle assessment (LCA) studies of desktop personal computers (PCs) are analyzed to assess the environmental impact of PCs and to explain inconsistencies and disagreements across existing studies. Impacts, characterized in this work in terms of primary energy demand and global warming potential, are decomposed into inventory components and impact per component in order to expose such inconsistencies. Additional information from related studies, especially regarding use‐phase energy consumption, helps interpret the LCA results. The weight of evidence strongly suggests that for primary energy demand and contribution to climate change, the use phase is the dominant life cycle phase; manufacturing impacts are smaller but substantial, and impacts due to product transportation and end‐of‐life activities are much smaller. Each of the few LCA studies that report manufacturing impacts as being greater than use‐phase impacts make unrealistically low assumptions regarding use‐phase energy consumption. Estimates of manufacturing impacts, especially those related to printed circuit boards and integrated circuits, are highly uncertain and variable; such estimates are very difficult to evaluate, and more systematic research is needed to reduce these uncertainties. The type of computer analyzed, such as low‐power light desktop or high‐power workstation, may dominate the total impact; future studies should therefore base their estimates on a large sample to smooth out this variation, or explicitly restrict the analysis to a specific type of computer.

Suggested Citation

  • Paul Teehan & Milind Kandlikar, 2012. "Sources of Variation in Life Cycle Assessments of Desktop Computers," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 182-194, April.
  • Handle: RePEc:bla:inecol:v:16:y:2012:i:s1:p:s182-s194
    DOI: 10.1111/j.1530-9290.2011.00431.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2011.00431.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2011.00431.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anders S. G. Andrae & Mikko Samuli Vaija, 2014. "To Which Degree Does Sector Specific Standardization Make Life Cycle Assessments Comparable?—The Case of Global Warming Potential of Smartphones," Challenges, MDPI, vol. 5(2), pages 1-21, November.
    2. Fabio Pesari & Giovanni Lagioia & Annarita Paiano, 2023. "Client‐side energy and GHGs assessment of advertising and tracking in the news websites," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 548-561, April.
    3. Josh Lepawsky & Kathia Cáceres & Marco Gusukuma & Ramzy Kahhat, 2023. "Carbon and water conservation value of independent, place‐based repair in Lima, Peru," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 896-907, June.
    4. Kasulaitis, Barbara V. & Babbitt, Callie W. & Kahhat, Ramzy & Williams, Eric & Ryen, Erinn G., 2015. "Evolving materials, attributes, and functionality in consumer electronics: Case study of laptop computers," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 1-10.
    5. Kevin Joseph Dillman & Áróra Árnadóttir & Jukka Heinonen & Michał Czepkiewicz & Brynhildur Davíðsdóttir, 2020. "Review and Meta-Analysis of EVs: Embodied Emissions and Environmental Breakeven," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    6. Raihanian Mashhadi, Ardeshir & Behdad, Sara, 2018. "Discriminant effects of consumer electronics use-phase attributes on household energy prediction," Energy Policy, Elsevier, vol. 118(C), pages 346-355.
    7. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:16:y:2012:i:s1:p:s182-s194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.