IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v16y2012i6p889-900.html
   My bibliography  Save this article

Using Activity‐Based Modeling to Simulate Urban Resource Demands at High Spatial and Temporal Resolutions

Author

Listed:
  • James Keirstead
  • Aruna Sivakumar

Abstract

Urban metabolism is an important technique for understanding the relationship between cities and the wider environment. Such analyses are typically performed at the scale of the whole city using annual average data, a feature that is driven largely by restrictions in data availability. However, in order to assess the resource implications of policy interventions and to design and operate efficient urban infrastructures such as energy systems, greater spatial and temporal resolutions are required in the underlying resource demand data. As this information is rarely available, we propose that these demand profiles might be simulated using activity‐based modeling. This is a microsimulation approach that calculates the activity schedules of individuals within the city and then converts this information into resource demands. The method is demonstrated by simulating electricity and natural gas demands in London and by examining how these nontransport energy demands might change in response to a shift in commuting patterns, for example, in response to a congestion charge or similar policy. The article concludes by discussing the strengths and weaknesses of the approach, as well as highlighting future research directions. Key challenges include the simulation of in‐home activities, assessing the transferability of the complex data sets and models supporting such analyses, and determining which aspects of urban metabolism would benefit most from this technique.

Suggested Citation

  • James Keirstead & Aruna Sivakumar, 2012. "Using Activity‐Based Modeling to Simulate Urban Resource Demands at High Spatial and Temporal Resolutions," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 889-900, December.
  • Handle: RePEc:bla:inecol:v:16:y:2012:i:6:p:889-900
    DOI: 10.1111/j.1530-9290.2012.00486.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2012.00486.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2012.00486.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John, Beatrice & Luederitz, Christopher & Lang, Daniel J. & von Wehrden, Henrik, 2019. "Toward Sustainable Urban Metabolisms. From System Understanding to System Transformation," Ecological Economics, Elsevier, vol. 157(C), pages 402-414.
    2. Circella, Giovanni & Johnston, Robert & Holguin, Andrew & Lehmer, Eric & Wang, Yang & McCoy, Michael, 2013. "Updating the PECAS Modeling Framework to Include Energy Use Data for Buildings," Institute of Transportation Studies, Working Paper Series qt8jr035gh, Institute of Transportation Studies, UC Davis.
    3. Ulpiani, Giulia & di Perna, Costanzo & Zinzi, Michele, 2019. "Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality," Applied Energy, Elsevier, vol. 239(C), pages 1091-1113.
    4. Kraxner, F. & Aoki, K. & Kindermann, G. & Leduc, S. & Albrecht, F. & Liu, J. & Yamagata, Y., 2016. "Bioenergy and the city – What can urban forests contribute?," Applied Energy, Elsevier, vol. 165(C), pages 990-1003.
    5. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    6. I-Chun Chen & Kuang-Ly Cheng & Hwong-Wen Ma & Cathy C.W. Hung, 2021. "Identifying Spatial Driving Factors of Energy and Water Consumption in the Context of Urban Transformation," Sustainability, MDPI, vol. 13(19), pages 1-18, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:16:y:2012:i:6:p:889-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.