IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v16y2012i6p814-828.html
   My bibliography  Save this article

Implementing Trans‐Boundary Infrastructure‐Based Greenhouse Gas Accounting for Delhi, India

Author

Listed:
  • Abel Chavez
  • Anu Ramaswami
  • Dwarakanath Nath
  • Ravi Guru
  • Emani Kumar

Abstract

Community‐wide greenhouse gas (GHG) emissions accounting is confounded by the relatively small spatial size of cities compared to nations—due to which, energy use in essential infrastructures serving cities, such as commuter and airline transport, energy supply, water supply, wastewater infrastructures, and others, often occurs outside the boundaries of the cities using them. The trans‐boundary infrastructure supply chain footprint (TBIF) GHG emissions accounting method, tested in eight U.S. cities, incorporates supply chain aspects of these trans‐boundary infrastructures serving cities, and is akin to an expanded geographic GHG emissions inventory. This article shows the results from applying the TBIF method in the rapidly developing city of Delhi, India. The objectives of this research are to (1) describe the data availability for implementing the TBIF method within a rapidly industrializing country, using the case of Delhi, India; (2) identify methodological differences in implementation of the TBIF method between Indian versus U.S. cities; and (3) compare broad energy use metrics between Delhi and U.S. cities, demonstrated by Denver, Colorado, USA, whose energy use characteristics and TBIF GHG emissions have previously been shown to be similar to U.S. per capita averages. This article concludes that most data required to implement the TBIF method in Delhi are readily available, and the methodology could be translated from U.S. to Indian cities. Delhi's 2009 community‐wide GHG emissions totaled 40.3 million metric tonnes of carbon dioxide equivalents (t CO2‐eq), which are normalized to yield 2.3 t CO2‐eq per capita; nationally, India reports its average per capita GHG emissions at 1.5 t CO2‐eq. In‐boundary GHG emissions contributed to 68% of Delhi's total, where end use (including electricity) energy in residential buildings, commercial and industrial usage, and fuel used in surface transportation contributed 24%, 19%, and 21%, respectively. The remaining 4% of the in‐boundary GHG emissions were from waste disposal, water and wastewater treatment, and cattle. Trans‐boundary infrastructures were estimated to equal 32% of Delhi's TBIF GHG emissions, with 5% attributed to fuel processing, 3% to air travel, 10% to cement, and 14% to food production outside the city.

Suggested Citation

  • Abel Chavez & Anu Ramaswami & Dwarakanath Nath & Ravi Guru & Emani Kumar, 2012. "Implementing Trans‐Boundary Infrastructure‐Based Greenhouse Gas Accounting for Delhi, India," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 814-828, December.
  • Handle: RePEc:bla:inecol:v:16:y:2012:i:6:p:814-828
    DOI: 10.1111/j.1530-9290.2012.00546.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2012.00546.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2012.00546.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Xuezhu & Li, Shaoying & Gao, Feng, 2020. "Examining spatial carbon metabolism: Features, future simulation, and land-based mitigation," Ecological Modelling, Elsevier, vol. 438(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:16:y:2012:i:6:p:814-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.