IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v11y2007i4p50-63.html
   My bibliography  Save this article

The Waste Input‐Output Approach to Materials Flow Analysis

Author

Listed:
  • Shinichiro Nakamura
  • Kenichi Nakajima
  • Yasushi Kondo
  • Tetsuya Nagasaka

Abstract

A general analytical model of materials flow analysis (MFA) incorporating physical waste input‐output is proposed that is fully consistent with the mass balance principle. Exploiting the triangular nature of the matrix of input coefficients, which is obtained by rearranging the ordering of sectors according to degrees of fabrication, the material composition matrix is derived, which gives the material composition of products. A formal mathematical definition of materials (or the objects, the flow of which is to be accounted for by MFA) is also introduced, which excludes the occurrence of double accounting in economy‐wide MFAs involving diverse inputs. By using the model, monetary input‐output (IO) tables can easily be converted into a physical material flow account (or physical input‐output tables [PIOT]) of an arbitrary number of materials, and the material composition of a product can be decomposed into its input origin. The first point represents substantial saving in the otherwise prohibitive cost that is associated with independent compilation of PIOT. The proposed methodology is applied to Japanese IO data for the flow of 11 base metals and their scrap (available as e‐supplement on the JIE Web site).

Suggested Citation

  • Shinichiro Nakamura & Kenichi Nakajima & Yasushi Kondo & Tetsuya Nagasaka, 2007. "The Waste Input‐Output Approach to Materials Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 11(4), pages 50-63, October.
  • Handle: RePEc:bla:inecol:v:11:y:2007:i:4:p:50-63
    DOI: 10.1162/jiec.2007.1290
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/jiec.2007.1290
    Download Restriction: no

    File URL: https://libkey.io/10.1162/jiec.2007.1290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Cuiyang & Qu, Shen & Jin, Yi & Tang, Xu & Liang, Sai & Chiu, Anthony S.F. & Xu, Ming, 2019. "Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Ryosuke Yokoi & Jun Nakatani & Yuichi Moriguchi, 2018. "An Extended Model for Tracking Accumulation Pathways of Materials Using Input–Output Tables: Application to Copper Flows in Japan," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    3. Ronny Meglin & Susanne Kytzia & Guillaume Habert, 2022. "Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Input‐Output Analyses, and Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 562-576, April.
    4. Soraya María RUIZ-PEÑALVER, 2016. "Employment Generated From The Multiplier Effect Of The Spanish Paper Industry," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 16(2), pages 5-14.
    5. Dilekli, Naci & Cazcarro, Ignacio, 2019. "Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    6. Ciprian Cimpan & Eivind Lekve Bjelle & Anders Hammer Strømman, 2021. "Plastic packaging flows in Europe: A hybrid input‐output approach," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1572-1587, December.
    7. Faye Duchin, 2017. "Resources for Sustainable Economic Development: A Framework for Evaluating Infrastructure System Alternatives," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    8. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    9. Harald U. Sverdrup & Deniz Koca & Peter Schlyter, 2017. "A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model," Biophysical Economics and Resource Quality, Springer, vol. 2(2), pages 1-20, June.
    10. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    11. Claudia Schilkowski & Manish Shukla & Sonal Choudhary, 2020. "Quantifying the circularity of regional industrial waste across multi-channel enterprises," Annals of Operations Research, Springer, vol. 290(1), pages 385-408, July.
    12. Chengpeng Lu & Xiaoli Pan & Xingpeng Chen & Jinhuang Mao & Jiaxing Pang & Bing Xue, 2021. "Modeling of Waste Flow in Industrial Symbiosis System at City-Region Level: A Case Study of Jinchang, China," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    13. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Keisuke Nansai & Yasuhiro Fukushima & Tetsuya Nagasaka, 2016. "Consumption-based accounting of steel alloying elements and greenhouse gas emissions associated with the metal use: the case of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-17, December.
    14. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    15. Christian Reynolds & Julia Piantadosi & John Boland, 2014. "A Waste Supply-Use Analysis of Australian Waste Flows," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 3(1), pages 1-16, December.
    16. Hertwich, Edgar, 2020. "Carbon fueling complex global value chains tripled in the period 1995-2012," SocArXiv zb3rh, Center for Open Science.
    17. Anders Hammer Strømman, 2009. "A Multi-Objective Assessment Of Input-Output Matrix Updating Methods," Economic Systems Research, Taylor & Francis Journals, vol. 21(1), pages 81-88.
    18. Ryosuke Yokoi & Jun Nakatani & Yuichi Moriguchi, 2018. "Calculation of Characterization Factors of Mineral Resources Considering Future Primary Resource Use Changes: A Comparison between Iron and Copper," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    19. Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    20. Xiang Gao & Sandy Dall'erba & Brenna Ellison & Andre F. T. Avelino & Cuihong Yang, 2022. "When one cannot bypass the byproducts: Plastic packaging waste embedded in production and export," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1460-1474, August.
    21. Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2019. "Urban waste flows and their potential for a circular economy model at city-region level," ULB Institutional Repository 2013/278528, ULB -- Universite Libre de Bruxelles.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:11:y:2007:i:4:p:50-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.