IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v11y2007i1p161-179.html
   My bibliography  Save this article

Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches

Author

Listed:
  • Shannon M. Lloyd
  • Robert Ries

Abstract

Life‐cycle assessment (LCA) practitioners build models to quantify resource consumption, environmental releases, and potential environmental and human health impacts of product systems. Most often, practitioners define a model structure, assign a single value to each parameter, and build deterministic models to approximate environmental outcomes. This approach fails to capture the variability and uncertainty inherent in LCA. To make good decisions, decision makers need to understand the uncertainty in and divergence between LCA outcomes for different product systems. Several approaches for conducting LCA under uncertainty have been proposed and implemented. For example, Monte Carlo simulation and fuzzy set theory have been applied in a limited number of LCA studies. These approaches are well understood and are generally accepted in quantitative decision analysis. But they do not guarantee reliable outcomes. A survey of approaches used to incorporate quantitative uncertainty analysis into LCA is presented. The suitability of each approach for providing reliable outcomes and enabling better decisions is discussed. Approaches that may lead to overconfident or unreliable results are discussed and guidance for improving uncertainty analysis in LCA is provided.

Suggested Citation

  • Shannon M. Lloyd & Robert Ries, 2007. "Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 161-179, January.
  • Handle: RePEc:bla:inecol:v:11:y:2007:i:1:p:161-179
    DOI: 10.1162/jiec.2007.1136
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/jiec.2007.1136
    Download Restriction: no

    File URL: https://libkey.io/10.1162/jiec.2007.1136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:11:y:2007:i:1:p:161-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.