IDEAS home Printed from https://ideas.repec.org/a/bla/ijhplm/v36y2021i5p1476-1485.html
   My bibliography  Save this article

Healthcare systems and Covid19: Lessons to be learnt from efficient countries

Author

Listed:
  • Muhammed Ordu
  • Hediye Kirli Akin
  • Eren Demir

Abstract

Background The novel coronavirus is rapidly spreading over the world and puts the health systems of countries under intense pressure. High hospitalization levels due to the pandemic outbreak have caused the intensive care units to work above capacity. Purpose A data envelopment analysis (DEA) based modelling approach was developed to evaluate the effectiveness of regions (i.e. city, country or clinical commissioning groups) against the pandemic outbreak. The objective is to enable related authorities better manage the struggle against the outbreak and put in place the emergency action plans immediately. Methodology/Approach DEA method was used to measure the efficiency scores of countries. Super efficiency DEA method was also applied to countries based on the level of efficiencies they have achieved. Sixteen countries were selected that have been facing with Covid19 pandemic outbreak for at least 5 consecutive weeks after their 100th confirmed case. Results A total of 80 DEA models were developed, that is, 16 DEA models for each week. The percentage of efficient countries decreased dramatically over time, from 43.75% in the first week to 25% in the fifth week. Unlike most European countries, China and South Korea increased their effectiveness after first week of implementing all the necessary measures. Conclusion This study sheds light into better understanding the effectiveness of policies adopted by countries and their management strategy in dealing with Covid19 pandemic. Our model will enable political leaders to identify inadequate policies as quickly as possible and learn from their peers for more effective decisions.

Suggested Citation

  • Muhammed Ordu & Hediye Kirli Akin & Eren Demir, 2021. "Healthcare systems and Covid19: Lessons to be learnt from efficient countries," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(5), pages 1476-1485, September.
  • Handle: RePEc:bla:ijhplm:v:36:y:2021:i:5:p:1476-1485
    DOI: 10.1002/hpm.3187
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hpm.3187
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hpm.3187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Kao, Ling-Jing & Lu, Chi-Jie & Chiu, Chih-Chou, 2011. "Efficiency measurement using independent component analysis and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 210(2), pages 310-317, April.
    4. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    5. Khushalani, Jaya & Ozcan, Yasar A., 2017. "Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA)," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 15-23.
    6. Po, Rung-Wei & Guh, Yuh-Yuan & Yang, Miin-Shen, 2009. "A new clustering approach using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 199(1), pages 276-284, November.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giménez, Víctor & Prior, Diego & Thieme, Claudio & Tortosa-Ausina, Emili, 2024. "International comparisons of COVID-19 pandemic management: What can be learned from activity analysis techniques?," Omega, Elsevier, vol. 122(C).
    2. Gökçe Manavgat & Martine Audibert, 2024. "Healthcare system efficiency and drivers: Re-evaluation of OECD countries for COVID-19," Post-Print hal-04350906, HAL.
    3. Claudio Thieme & Víctor Giménez & Diego Prior & Emili Tortosa-Ausina, 2023. "Health vs. Wealth: A Cross-country Analysis of Managerial Effectiveness of the COVID-19," Working Papers 2023/10, Economics Department, Universitat Jaume I, Castellón (Spain).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Necmi Kemal Avkiran, 2017. "An illustration of multiple-stakeholder perspective using a survey across Australia, China and Japan," Annals of Operations Research, Springer, vol. 248(1), pages 93-121, January.
    2. Avkiran, Necmi K. & Morita, Hiroshi, 2010. "Predicting Japanese bank stock performance with a composite relative efficiency metric: A new investment tool," Pacific-Basin Finance Journal, Elsevier, vol. 18(3), pages 254-271, June.
    3. Avkiran, Necmi K., 2011. "Association of DEA super-efficiency estimates with financial ratios: Investigating the case for Chinese banks," Omega, Elsevier, vol. 39(3), pages 323-334, June.
    4. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    5. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    7. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    8. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    9. Ruiz, Jose L. & Sirvent, Inmaculada, 2001. "Techniques for the assessment of influence in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 390-399, July.
    10. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    11. Abolghasem, Sepideh & Gómez-Sarmiento, Juliana & Medaglia, Andrés L. & Sarmiento, Olga L. & González, Andrés D. & Díaz del Castillo, Adriana & Rozo-Casas, Juan F. & Jacoby, Enrique, 2018. "A DEA-centric decision support system for evaluating Ciclovía-Recreativa programs in the Americas," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 90-101.
    12. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    13. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    14. Mahmood Mehdiloozad & Mohammad Bagher Ahmadi & Biresh K. Sahoo, 2017. "On classifying decision making units in DEA: a unified dominance-based model," Annals of Operations Research, Springer, vol. 250(1), pages 167-184, March.
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    16. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations," Energy Policy, Elsevier, vol. 108(C), pages 163-177.
    17. Liu, John S. & Lu, Wen-Min, 2010. "DEA and ranking with the network-based approach: a case of R&D performance," Omega, Elsevier, vol. 38(6), pages 453-464, December.
    18. K. Tone & M. Tsutsui, 2015. "How to Deal with Non-Convex Frontiers in Data Envelopment Analysis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1002-1028, September.
    19. Emmanuel Thanassoulis & Maria Da Conceicao & A. Silva Portela, 2002. "School Outcomes: Sharing the Responsibility Between Pupil and School1," Education Economics, Taylor & Francis Journals, vol. 10(2), pages 183-207.
    20. Chen, Chien-Ming, 2013. "Super efficiencies or super inefficiencies? Insights from a joint computation model for slacks-based measures in DEA," European Journal of Operational Research, Elsevier, vol. 226(2), pages 258-267.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ijhplm:v:36:y:2021:i:5:p:1476-1485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0749-6753 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.