IDEAS home Printed from https://ideas.repec.org/a/bla/ijethy/v15y2019i3p249-267.html
   My bibliography  Save this article

Accuracy of policy function approximations for strongly concave recursive problems

Author

Listed:
  • Wilfredo L. Maldonado
  • Osvaldo Candido
  • Luis Felipe V. N. Pereira

Abstract

Under the hypotheses of strong concavity of the aggregator function and concavity of the stochastic operator which define the objective function of the stochastic dynamic programming problem (SDPP), we prove that the policy function approximation of the problem is a Hölder continuous function with respect to the value function approximation. From this, explicit error bounds for computation of the solution of such problems are provided. To illustrate the results we apply the error control formula to the solution of two SDPPs with aggregator functions: the neoclassical Ramsey economic growth model and the Lucas asset pricing model.

Suggested Citation

  • Wilfredo L. Maldonado & Osvaldo Candido & Luis Felipe V. N. Pereira, 2019. "Accuracy of policy function approximations for strongly concave recursive problems," International Journal of Economic Theory, The International Society for Economic Theory, vol. 15(3), pages 249-267, September.
  • Handle: RePEc:bla:ijethy:v:15:y:2019:i:3:p:249-267
    DOI: 10.1111/ijet.12171
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ijet.12171
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ijet.12171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ijethy:v:15:y:2019:i:3:p:249-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1742-7355 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.