IDEAS home Printed from https://ideas.repec.org/a/bla/finmgt/v52y2023i2p375-401.html
   My bibliography  Save this article

Is it time for popcorn? Daily box office earnings and aggregate stock returns

Author

Listed:
  • Seda Oz
  • Steve Fortin

Abstract

We quantitatively measure the interactions between daily consumption and the stock market. We find that daily consumption, proxied by the cyclical component of theatrical box office earnings, can significantly and positively predict stock returns for up to 5 days. We also demonstrate a trading strategy using our consumption measures that yield nontrivial excess returns with little risk. These findings suggest that the box office effect is an economically important factor for equities. The framework implies that daily consumption carries value‐relevant public information, which leads to price reaction at a daily frequency.

Suggested Citation

  • Seda Oz & Steve Fortin, 2023. "Is it time for popcorn? Daily box office earnings and aggregate stock returns," Financial Management, Financial Management Association International, vol. 52(2), pages 375-401, June.
  • Handle: RePEc:bla:finmgt:v:52:y:2023:i:2:p:375-401
    DOI: 10.1111/fima.12408
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/fima.12408
    Download Restriction: no

    File URL: https://libkey.io/10.1111/fima.12408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Alexi Savov, 2011. "Asset Pricing with Garbage," Journal of Finance, American Finance Association, vol. 66(1), pages 177-201, February.
    3. Tim A. Kroencke, 2017. "Asset Pricing without Garbage," Journal of Finance, American Finance Association, vol. 72(1), pages 47-98, February.
    4. Butler, Alexander W. & Grullon, Gustavo & Weston, James P., 2005. "Stock Market Liquidity and the Cost of Issuing Equity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(2), pages 331-348, June.
    5. Bell, William R. & Wilcox, David W., 1993. "The effect of sampling error on the time series behavior of consumption data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 235-265.
    6. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.
    7. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    8. Golez, Benjamin & Koudijs, Peter, 2018. "Four centuries of return predictability," Journal of Financial Economics, Elsevier, vol. 127(2), pages 248-263.
    9. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    10. Wilcox, David W, 1992. "The Construction of U.S. Consumption Data: Some Facts and Their Implications for Empirical Work," American Economic Review, American Economic Association, vol. 82(4), pages 922-941, September.
    11. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    12. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
    13. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    14. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    15. Bing Han & Gang Li, 2021. "Information Content of Aggregate Implied Volatility Spread," Management Science, INFORMS, vol. 67(2), pages 1249-1269, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borup, Daniel & Schütte, Erik Christian Montes, 2022. "Asset pricing with data revisions," Journal of Financial Markets, Elsevier, vol. 59(PB).
    2. Atanasov, Victoria, 2021. "Unemployment and aggregate stock returns," Journal of Banking & Finance, Elsevier, vol. 129(C).
    3. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    4. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    5. Afsaneh Bahrami & Abul Shamsuddin & Katherine Uylangco, 2018. "Out‐of‐sample stock return predictability in emerging markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 727-750, September.
    6. Cao, Zhen & Han, Liyan & Zhang, Qunzi, 2022. "Stock return predictability in China: Power of oil price trend," Finance Research Letters, Elsevier, vol. 47(PA).
    7. Schrimpf, Andreas, 2010. "International stock return predictability under model uncertainty," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1256-1282, November.
    8. Ma, Feng & Lu, Xinjie & Liu, Jia & Huang, Dengshi, 2022. "Macroeconomic attention and stock market return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    9. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    10. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    11. Haibin Xie & Shouyang Wang, 2015. "Risk-return trade-off, information diffusion, and U.S. stock market predictability," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-20, December.
    12. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    13. Tim A. Kroencke, 2017. "Asset Pricing without Garbage," Journal of Finance, American Finance Association, vol. 72(1), pages 47-98, February.
    14. Park, Dojoon & Hahn, Jaehoon & Eom, Young Ho, 2024. "Predicting the equity premium with financial ratios: A comprehensive look over a long period in Korea," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    15. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Taamouti, Abderrahim, 2019. "The information content of forward moments," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 527-541.
    16. repec:idn:journl:v:1:y:2019:i:sp2:p:1-12 is not listed on IDEAS
    17. Back, Kerry & Crotty, Kevin & Kazempour, Seyed Mohammad, 2022. "Validity, tightness, and forecasting power of risk premium bounds," Journal of Financial Economics, Elsevier, vol. 144(3), pages 732-760.
    18. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    19. Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    20. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "International tail risk and World Fear," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 244-259.
    21. Huang, Yisu & Ma, Feng & Bouri, Elie & Huang, Dengshi, 2023. "A comprehensive investigation on the predictive power of economic policy uncertainty from non-U.S. countries for U.S. stock market returns," International Review of Financial Analysis, Elsevier, vol. 87(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:finmgt:v:52:y:2023:i:2:p:375-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/fmaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.