IDEAS home Printed from https://ideas.repec.org/a/bla/ecinqu/v53y2015i2p1156-1169.html
   My bibliography  Save this article

Analyzing Comovements In Housing Prices Using Vine Copulas

Author

Listed:
  • David M. Zimmer

Abstract

type="main" xml:id="ecin12156-abs-0001"> Prior to the housing crisis, the Gaussian copula provided the basis for estimates of the degree of diversification of structured mortgage-based securities. The Gaussian copula's popularity stemmed not only from its link to the familiar normal distribution, but also from the fact that, unlike other copula-based models, it readily extends to higher dimensions. But the Gaussian copula has asymptotic independence, such that events, regardless of the strength of their correlation, become independent if one pushes far enough into the tails. Instead, this article forms multivariate models of housing price comovements using vine copulas. These more flexible models not only fit the data better, but they also uncover far stronger correlations between housing price movements, especially during extreme market swings . ( JEL G21, C32, C51)

Suggested Citation

  • David M. Zimmer, 2015. "Analyzing Comovements In Housing Prices Using Vine Copulas," Economic Inquiry, Western Economic Association International, vol. 53(2), pages 1156-1169, April.
  • Handle: RePEc:bla:ecinqu:v:53:y:2015:i:2:p:1156-1169
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ecin.2015.53.issue-2
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Sang Hoon & Uddin, Gazi Salah & Ahmed, Ali & Yoon, Seong-Min, 2018. "Multi-scale causality and extreme tail inter-dependence among housing prices," Economic Modelling, Elsevier, vol. 70(C), pages 301-309.
    2. GRIGORIADIS, Vasilis & EMMANOUILIDES, Christos & FOUSEKIS, Panos, 2016. "The Integration Of Pigmeat Markets In The Eu. Evidence From A Regular Mixed Vine Copula," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 19(1), pages 1-10, March.
    3. Lei Hou & Wei Long & Qi Li, 2019. "Comovement of Home Prices: A Conditional Copula Approach," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 297-318, May.
    4. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    5. Andréas Heinen & James B. Kau & Donald C. Keenan & Mi Lim Kim, 2021. "Spatial Dependence in Subprime Mortgage Defaults," The Journal of Real Estate Finance and Economics, Springer, vol. 62(1), pages 1-24, January.
    6. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    7. Stelios Bekiros & Amanda Dahlström & Gazi Salah Uddin & Oskar Ege & Ranadeva Jayasekera, 2020. "A tale of two shocks: The dynamics of international real estate markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(1), pages 3-27, January.
    8. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    9. Sukcharoen, Kunlapath & Leatham, David J., 2017. "Hedging downside risk of oil refineries: A vine copula approach," Energy Economics, Elsevier, vol. 66(C), pages 493-507.

    More about this item

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecinqu:v:53:y:2015:i:2:p:1156-1169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/weaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.