IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v72y2024i2p199-204.html
   My bibliography  Save this article

Method myopia

Author

Listed:
  • Alan P. Ker

Abstract

Method myopia is defined as theoretical rhetoric absent empirical discernment regarding flavor‐of‐the‐day econometric methodologies. This Fellows Address discusses why method myopia is pervasive, what factors contribute to the pervasiveness, why is likely it to increase, and finally, a possible remedy. To that end, incentive structures facing researchers, reviewers, and editors are considered within the life‐cycle of a typical econometric methodology. Considering our discipline is empirically driven, there are potentially large costs by using flavor‐of‐the‐day methodologies when an alternative ‐‐ possibly leading to different economic results and policy responses ‐‐ is the appropriate method. Furthermore, method myopia can notably restrict the set of research problems examined thereby creating additional, potentially large, opportunity costs. Finally, over‐selling the superiority/completeness/correctness of results from such flavor‐of‐the‐day methodologies to policy makers can not only be costly in the particular case, but can undermine the long‐term credibility of our disciplinary advice to policy makers. La myopie des méthodes est définie comme une rhétorique théorique dépourvue de discernement empirique concernant les méthodologies économétriques au goût du jour. Ce discours des boursiers explique pourquoi la myopie méthodique est omniprésente, quels facteurs contribuent à cette omniprésence, pourquoi je m'attends à ce qu'elle augmente (au moins dans un avenir proche) et un remède possible. À cette fin, les structures d'incitation auxquelles sont confrontés les chercheurs, les évaluateurs et les éditeurs sont considérées dans le cycle de vie d'une méthodologie économétrique typique. Étant donné que notre discipline est empirique, l'utilization de méthodologies à la mode lorsqu'une alternative—pouvant conduire à des résultats économiques et à des réponses politiques différents—est la méthode appropriée. En outre, la myopie des méthodes peut restreindre considérablement l'ensemble des problèmes de recherche examinés, créant ainsi des coûts d'opportunité supplémentaires, potentiellement importants. Enfin, vendre à l'excès la supériorité/l'exhaustivité/l'exactitude des résultats de ces méthodologies du moment aux décideurs politiques peut non seulement s'avérer coûteux dans un cas particulier, mais peut également miner la crédibilité à long terme de la discipline auprès des décideurs politiques.

Suggested Citation

  • Alan P. Ker, 2024. "Method myopia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 199-204, June.
  • Handle: RePEc:bla:canjag:v:72:y:2024:i:2:p:199-204
    DOI: 10.1111/cjag.12348
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12348
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angus Deaton, 2010. "Instruments, Randomization, and Learning about Development," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 424-455, June.
    2. Alan P. Ker, 2017. "Evaluating Agricultural Economists within Colleges and Faculties of Agriculture," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 65(1), pages 5-17, March.
    3. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    2. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    3. Sedlmayr, Richard & Shah, Anuj & Sulaiman, Munshi, 2020. "Cash-plus: Poverty impacts of alternative transfer-based approaches," Journal of Development Economics, Elsevier, vol. 144(C).
    4. Bo, Hao & Galiani, Sebastian, 2021. "Assessing external validity," Research in Economics, Elsevier, vol. 75(3), pages 274-285.
    5. Ryan Abman & Clark Lundberg & Michele Ruta, 2024. "The Effectiveness of Environmental Provisions in Regional Trade Agreements," Journal of the European Economic Association, European Economic Association, vol. 22(6), pages 2507-2548.
    6. Mikel Bedayo & Raquel Vegas & Gabriel Jiménez & José-Luis Peydró, 2020. "Screening and Loan Origination Time: Lending Standards, Loan Defaults and Bank Failures," Working Papers 1215, Barcelona School of Economics.
    7. Francesco Fallucchi & Jan Niederreiter & Massimo Riccaboni, 2021. "Learning and dropout in contests: an experimental approach," Theory and Decision, Springer, vol. 90(2), pages 245-278, March.
    8. Allais, Olivier & Leroy, Pascal & Mink, Julia, 2020. "Changes in food purchases at retirement in France," Food Policy, Elsevier, vol. 90(C).
    9. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    10. Tal Gross & Timothy J. Layton & Daniel Prinz, 2022. "The Liquidity Sensitivity of Healthcare Consumption: Evidence from Social Security Payments," American Economic Review: Insights, American Economic Association, vol. 4(2), pages 175-190, June.
    11. Burlig, Fiona & Preonas, Louis & Woerman, Matt, 2020. "Panel data and experimental design," Journal of Development Economics, Elsevier, vol. 144(C).
    12. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Aaron K. Chatterji & Michael Findley & Nathan M. Jensen & Stephan Meier & Daniel Nielson, 2016. "Field experiments in strategy research," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 116-132, January.
    13. Cassan,Guilhem & Keniston,Daniel & Kleineberg,Tatjana Karina, 2021. "A Division of Laborers : Identity and Efficiency in India," Policy Research Working Paper Series 9544, The World Bank.
    14. Timothy J. Bartik & Nathan Sotherland, 2019. "Local Job Multipliers in the United States: Variation with Local Characteristics and with High-Tech Shocks," Upjohn Working Papers 19-301, W.E. Upjohn Institute for Employment Research.
    15. Timothy Powell‐Jackson & Winnie Chi‐Man Yip & Wei Han, 2015. "Realigning Demand and Supply Side Incentives to Improve Primary Health Care Seeking in Rural China," Health Economics, John Wiley & Sons, Ltd., vol. 24(6), pages 755-772, June.
    16. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    17. Nakakawa, Frances & Mugisha, Johnny & Kaaya, Archileo N. & Tumwesigye, Nazarius M. & Hennessey, Martina, 2024. "Nutrition education effects on food and nutrition security for women living with HIV/AIDS in Uganda," Food Policy, Elsevier, vol. 128(C).
    18. Bäuml, Matthias & Kümpel, Christian, 2020. "Hospital responses to the introduction of reimbursements by treatment intensity in a (presumably lump sum) DRG system," hche Research Papers 22, University of Hamburg, Hamburg Center for Health Economics (hche).
    19. Mariella Gonzales & Gianmarco León-Ciliotta & Luis R. Martínez, 2022. "How Effective Are Monetary Incentives to Vote? Evidence from a Nationwide Policy," American Economic Journal: Applied Economics, American Economic Association, vol. 14(1), pages 293-326, January.
    20. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:72:y:2024:i:2:p:199-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.