IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v68y2020i1p117-125.html
   My bibliography  Save this article

A local maximum likelihood model of crop yield distributions

Author

Listed:
  • Ximing Wu
  • Yu Yvette Zhang

Abstract

In this note, we propose a local maximum likelihood estimator for spatially‐dependent distributions. Our estimator adopts the Poisson regression approach for density ratio models and incorporates spatial smoothing via local regression. We also present a method of smoothing parameter selection. We illustrate this easy‐to‐implement estimator with an application to the estimation of corn yield distributions of Iowa counties. The usefulness of the approach is further demonstrated via an application to the estimation of crop insurance premium. Dans cette note, nous proposons un estimateur local du maximum de vraisemblance pour des distributions spatialement dépendantes. Notre estimateur adopte l'approche de régression de Poisson pour les modèles de rapport de densité et intègre le lissage spatial via une régression locale. Nous présentons également une méthode de lissage de la sélection des paramètres. Nous illustrons cet estimateur facile à mettre en œuvre avec une application de l'estimation de distributions de rendement de maïs dans les comtés de l'Iowa. L'utilité de l'approche est également démontrée en l'appliquant à l'estimation de prime d'assurance récolte.

Suggested Citation

  • Ximing Wu & Yu Yvette Zhang, 2020. "A local maximum likelihood model of crop yield distributions," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 68(1), pages 117-125, March.
  • Handle: RePEc:bla:canjag:v:68:y:2020:i:1:p:117-125
    DOI: 10.1111/cjag.12219
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12219
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.
    2. repec:ags:aaea22:335759 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:68:y:2020:i:1:p:117-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.