IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3458-3471.html
   My bibliography  Save this article

Conditional inference in cis‐Mendelian randomization using weak genetic factors

Author

Listed:
  • Ashish Patel
  • Dipender Gill
  • Paul Newcombe
  • Stephen Burgess

Abstract

Mendelian randomization (MR) is a widely used method to estimate the causal effect of an exposure on an outcome by using genetic variants as instrumental variables. MR analyses that use variants from only a single genetic region (cis‐MR) encoding the protein target of a drug are able to provide supporting evidence for drug target validation. This paper proposes methods for cis‐MR inference that use many correlated variants to make robust inferences even in situations, where those variants have only weak effects on the exposure. In particular, we exploit the highly structured nature of genetic correlations in single gene regions to reduce the dimension of genetic variants using factor analysis. These genetic factors are then used as instrumental variables to construct tests for the causal effect of interest. Since these factors may often be weakly associated with the exposure, size distortions of standard t‐tests can be severe. Therefore, we consider two approaches based on conditional testing. First, we extend results of commonly‐used identification‐robust tests for the setting where estimated factors are used as instruments. Second, we propose a test which appropriately adjusts for first‐stage screening of genetic factors based on their relevance. Our empirical results provide genetic evidence to validate cholesterol‐lowering drug targets aimed at preventing coronary heart disease.

Suggested Citation

  • Ashish Patel & Dipender Gill & Paul Newcombe & Stephen Burgess, 2023. "Conditional inference in cis‐Mendelian randomization using weak genetic factors," Biometrics, The International Biometric Society, vol. 79(4), pages 3458-3471, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3458-3471
    DOI: 10.1111/biom.13888
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13888
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Bai, Jushan & Ng, Serena, 2010. "Instrumental Variable Estimation In A Data Rich Environment," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1577-1606, December.
    3. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    4. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    5. Amand F. Schmidt & Nicholas B. Hunt & Maria Gordillo-Marañón & Pimphen Charoen & Fotios Drenos & Mika Kivimaki & Deborah A. Lawlor & Claudia Giambartolomei & Olia Papacosta & Nishi Chaturvedi & Joshua, 2021. "Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    8. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    9. Patrik Guggenberger & Gitanjali Kumar, 2012. "On the size distortion of tests after an overidentifying restrictions pretest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1138-1160, November.
    10. Whitney K. Newey & Frank Windmeijer, 2009. "Generalized Method of Moments With Many Weak Moment Conditions," Econometrica, Econometric Society, vol. 77(3), pages 687-719, May.
    11. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    12. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    13. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    14. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    3. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    4. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    5. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    7. Sophocles Mavroeidis & Mikkel Plagborg-Møller & James H. Stock, 2014. "Empirical Evidence on Inflation Expectations in the New Keynesian Phillips Curve," Journal of Economic Literature, American Economic Association, vol. 52(1), pages 124-188, March.
    8. Travaglini, Guido, 2010. "Dynamic Econometric Testing of Climate Change and of its Causes," MPRA Paper 23600, University Library of Munich, Germany.
    9. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    11. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    12. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    14. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    15. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    16. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    17. Xu Cheng & Winston Wei Dou & Zhipeng Liao, 2022. "Macro‐Finance Decoupling: Robust Evaluations of Macro Asset Pricing Models," Econometrica, Econometric Society, vol. 90(2), pages 685-713, March.
    18. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    19. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    20. Anna Mikusheva & Liyang Sun, 2024. "Weak identification with many instruments," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages -28.
    21. In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018. "A multilevel factor model: Identification, asymptotic theory and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3458-3471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.