Author
Listed:
- Russell T. Shinohara
- Haochang Shou
- Marco Carone
- Robert Schultz
- Birkan Tunc
- Drew Parker
- Melissa Lynne Martin
- Ragini Verma
Abstract
The field of neuroimaging dedicated to mapping connections in the brain is increasingly being recognized as key for understanding neurodevelopment and pathology. Networks of these connections are quantitatively represented using complex structures, including matrices, functions, and graphs, which require specialized statistical techniques for estimation and inference about developmental and disorder‐related changes. Unfortunately, classical statistical testing procedures are not well suited to high‐dimensional testing problems. In the context of global or regional tests for differences in neuroimaging data, traditional analysis of variance (ANOVA) is not directly applicable without first summarizing the data into univariate or low‐dimensional features, a process that might mask the salient features of high‐dimensional distributions. In this work, we consider a general framework for two‐sample testing of complex structures by studying generalized within‐group and between‐group variances based on distances between complex and potentially high‐dimensional observations. We derive an asymptotic approximation to the null distribution of the ANOVA test statistic, and conduct simulation studies with scalar and graph outcomes to study finite sample properties of the test. Finally, we apply our test to our motivating study of structural connectivity in autism spectrum disorder.
Suggested Citation
Russell T. Shinohara & Haochang Shou & Marco Carone & Robert Schultz & Birkan Tunc & Drew Parker & Melissa Lynne Martin & Ragini Verma, 2020.
"Distance‐based analysis of variance for brain connectivity,"
Biometrics, The International Biometric Society, vol. 76(1), pages 257-269, March.
Handle:
RePEc:bla:biomet:v:76:y:2020:i:1:p:257-269
DOI: 10.1111/biom.13123
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:1:p:257-269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.