IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i4p1179-1190.html
   My bibliography  Save this article

Penalized local polynomial regression for spatial data

Author

Listed:
  • Wu Wang
  • Ying Sun

Abstract

When performing spatial regression analysis in environmental data applications, spatial heterogeneity in the regression coefficients is often observed. Spatially varying coefficient models, including geographically weighted regression and spline models, are standard tools for quantifying such heterogeneity. In this paper, we propose a spatially varying coefficient model that represents the spatially varying parameters as a mixture of local polynomials at selected locations. The local polynomial parameters have attractive interpretations, indicating various types of spatial heterogeneity. Instead of estimating the spatially varying regression coefficients directly, we develop a penalized least squares regression procedure for the local polynomial parameter estimation, which both shrinks the parameter estimation and penalizes the differences among parameters that are associated with neighboring locations. We develop confidence intervals for the varying regression coefficients and prediction intervals for the response. We apply the proposed method to characterize the spatially varying association between particulate matter concentrations (PM2.5) and pollutant gases related to the secondary aerosol formulation in China. The identified regression coefficients show distinct spatial patterns for nitrogen dioxide, sulfur dioxide, and carbon monoxide during different seasons.

Suggested Citation

  • Wu Wang & Ying Sun, 2019. "Penalized local polynomial regression for spatial data," Biometrics, The International Biometric Society, vol. 75(4), pages 1179-1190, December.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1179-1190
    DOI: 10.1111/biom.13077
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13077
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1179-1190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.