IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i4p1168-1178.html
   My bibliography  Save this article

Semiparametric frailty models for zero‐inflated event count data in the presence of informative dropout

Author

Listed:
  • Guoqing Diao
  • Donglin Zeng
  • Kuolung Hu
  • Joseph G. Ibrahim

Abstract

Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.

Suggested Citation

  • Guoqing Diao & Donglin Zeng & Kuolung Hu & Joseph G. Ibrahim, 2019. "Semiparametric frailty models for zero‐inflated event count data in the presence of informative dropout," Biometrics, The International Biometric Society, vol. 75(4), pages 1168-1178, December.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1168-1178
    DOI: 10.1111/biom.13085
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13085
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1168-1178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.