Author
Listed:
- Maria Masotti
- Bin Guo
- Baolin Wu
Abstract
Genetic variants associated with disease outcomes can be used to develop personalized treatment. To reach this precision medicine goal, hundreds of large‐scale genome‐wide association studies (GWAS) have been conducted in the past decade to search for promising genetic variants associated with various traits. They have successfully identified tens of thousands of disease‐related variants. However, in total these identified variants explain only part of the variation for most complex traits. There remain many genetic variants with small effect sizes to be discovered, which calls for the development of (a) GWAS with more samples and more comprehensively genotyped variants, for example, the NHLBI Trans‐Omics for Precision Medicine (TOPMed) Program is planning to conduct whole genome sequencing on over 100 000 individuals; and (b) novel and more powerful statistical analysis methods. The current dominating GWAS analysis approach is the “single trait” association test, despite the fact that many GWAS are conducted in deeply phenotyped cohorts including many correlated and well‐characterized outcomes, which can help improve the power to detect novel variants if properly analyzed, as suggested by increasing evidence that pleiotropy, where a genetic variant affects multiple traits, is the norm in genome‐phenome associations. We aim to develop pleiotropy informed powerful association test methods across multiple traits for GWAS. Since it is generally very hard to access individual‐level GWAS phenotype and genotype data for those existing GWAS, due to privacy concerns and various logistical considerations, we develop rigorous statistical methods for pleiotropy informed adaptive multitrait association test methods that need only summary association statistics publicly available from most GWAS. We first develop a pleiotropy test, which has powerful performance for truly pleiotropic variants but is sensitive to the pleiotropy assumption. We then develop a pleiotropy informed adaptive test that has robust and powerful performance under various genetic models. We develop accurate and efficient numerical algorithms to compute the analytical P‐value for the proposed adaptive test without the need of resampling or permutation. We illustrate the performance of proposed methods through application to joint association test of GWAS meta‐analysis summary data for several glycemic traits. Our proposed adaptive test identified several novel loci missed by individual trait based GWAS meta‐analysis. All the proposed methods are implemented in a publicly available R package.
Suggested Citation
Maria Masotti & Bin Guo & Baolin Wu, 2019.
"Pleiotropy informed adaptive association test of multiple traits using genome‐wide association study summary data,"
Biometrics, The International Biometric Society, vol. 75(4), pages 1076-1085, December.
Handle:
RePEc:bla:biomet:v:75:y:2019:i:4:p:1076-1085
DOI: 10.1111/biom.13076
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1076-1085. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.