IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i3p950-965.html
   My bibliography  Save this article

Empirical‐likelihood‐based criteria for model selection on marginal analysis of longitudinal data with dropout missingness

Author

Listed:
  • Chixiang Chen
  • Biyi Shen
  • Lijun Zhang
  • Yuan Xue
  • Ming Wang

Abstract

Longitudinal data are common in clinical trials and observational studies, where missing outcomes due to dropouts are always encountered. Under such context with the assumption of missing at random, the weighted generalized estimating equation (WGEE) approach is widely adopted for marginal analysis. Model selection on marginal mean regression is a crucial aspect of data analysis, and identifying an appropriate correlation structure for model fitting may also be of interest and importance. However, the existing information criteria for model selection in WGEE have limitations, such as separate criteria for the selection of marginal mean and correlation structures, unsatisfactory selection performance in small‐sample setups, and so forth. In particular, there are few studies to develop joint information criteria for selection of both marginal mean and correlation structures. In this work, by embedding empirical likelihood into the WGEE framework, we propose two innovative information criteria named a joint empirical Akaike information criterion and a joint empirical Bayesian information criterion, which can simultaneously select the variables for marginal mean regression and also correlation structure. Through extensive simulation studies, these empirical‐likelihood‐based criteria exhibit robustness, flexibility, and outperformance compared to the other criteria including the weighted quasi‐likelihood under the independence model criterion, the missing longitudinal information criterion, and the joint longitudinal information criterion. In addition, we provide a theoretical justification of our proposed criteria, and present two real data examples in practice for further illustration.

Suggested Citation

  • Chixiang Chen & Biyi Shen & Lijun Zhang & Yuan Xue & Ming Wang, 2019. "Empirical‐likelihood‐based criteria for model selection on marginal analysis of longitudinal data with dropout missingness," Biometrics, The International Biometric Society, vol. 75(3), pages 950-965, September.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:950-965
    DOI: 10.1111/biom.13060
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13060
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:950-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.