IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i3p917-926.html
   My bibliography  Save this article

A sensitivity analysis approach for informative dropout using shared parameter models

Author

Listed:
  • Li Su
  • Qiuju Li
  • Jessica K. Barrett
  • Michael J. Daniels

Abstract

Shared parameter models (SPMs) are a useful approach to addressing bias from informative dropout in longitudinal studies. In SPMs it is typically assumed that the longitudinal outcome process and the dropout time are independent, given random effects and observed covariates. However, this conditional independence assumption is unverifiable. Currently, sensitivity analysis strategies for this unverifiable assumption of SPMs are underdeveloped. In principle, parameters that can and cannot be identified by the observed data should be clearly separated in sensitivity analyses, and sensitivity parameters should not influence the model fit to the observed data. For SPMs this is difficult because it is not clear how to separate the observed data likelihood from the distribution of the missing data given the observed data (i.e., ‘extrapolation distribution’). In this article, we propose a new approach for transparent sensitivity analyses for informative dropout that separates the observed data likelihood and the extrapolation distribution, using a typical SPM as a working model for the complete data generating mechanism. For this model, the default extrapolation distribution is a skew‐normal distribution (i.e., it is available in a closed form). We propose anchoring the sensitivity analysis on the default extrapolation distribution under the specified SPM and calibrate the sensitivity parameters using the observed data for subjects who drop out. The proposed approach is used to address informative dropout in the HIV Epidemiology Research Study.

Suggested Citation

  • Li Su & Qiuju Li & Jessica K. Barrett & Michael J. Daniels, 2019. "A sensitivity analysis approach for informative dropout using shared parameter models," Biometrics, The International Biometric Society, vol. 75(3), pages 917-926, September.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:917-926
    DOI: 10.1111/biom.13027
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13027
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:917-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.