Author
Listed:
- Jie Zhou
- Jiajia Zhang
- Alexander C. Mclain
- Wenbin Lu
- Xuemei Sui
- James W. Hardin
Abstract
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.
Suggested Citation
Jie Zhou & Jiajia Zhang & Alexander C. Mclain & Wenbin Lu & Xuemei Sui & James W. Hardin, 2019.
"A varying‐coefficient generalized odds rate model with time‐varying exposure: An application to fitness and cardiovascular disease mortality,"
Biometrics, The International Biometric Society, vol. 75(3), pages 853-863, September.
Handle:
RePEc:bla:biomet:v:75:y:2019:i:3:p:853-863
DOI: 10.1111/biom.13057
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:853-863. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.