IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i3p745-756.html
   My bibliography  Save this article

High dimensional mediation analysis with latent variables

Author

Listed:
  • Andriy Derkach
  • Ruth M. Pfeiffer
  • Ting‐Huei Chen
  • Joshua N. Sampson

Abstract

We propose a model for high dimensional mediation analysis that includes latent variables. We describe our model in the context of an epidemiologic study for incident breast cancer with one exposure and a large number of biomarkers (i.e., potential mediators). We assume that the exposure directly influences a group of latent, or unmeasured, factors which are associated with both the outcome and a subset of the biomarkers. The biomarkers associated with the latent factors linking the exposure to the outcome are considered “mediators.” We derive the likelihood for this model and develop an expectation‐maximization algorithm to maximize an L1‐penalized version of this likelihood to limit the number of factors and associated biomarkers. We show that the resulting estimates are consistent and that the estimates of the nonzero parameters have an asymptotically normal distribution. In simulations, procedures based on this new model can have significantly higher power for detecting the mediating biomarkers compared with the simpler approaches. We apply our method to a study that evaluates the relationship between body mass index, 481 metabolic measurements, and estrogen‐receptor positive breast cancer.

Suggested Citation

  • Andriy Derkach & Ruth M. Pfeiffer & Ting‐Huei Chen & Joshua N. Sampson, 2019. "High dimensional mediation analysis with latent variables," Biometrics, The International Biometric Society, vol. 75(3), pages 745-756, September.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:745-756
    DOI: 10.1111/biom.13053
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13053
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    2. Yanyi Song & Xiang Zhou & Min Zhang & Wei Zhao & Yongmei Liu & Sharon L. R. Kardia & Ana V. Diez Roux & Belinda L. Needham & Jennifer A. Smith & Bhramar Mukherjee, 2020. "Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies," Biometrics, The International Biometric Society, vol. 76(3), pages 700-710, September.
    3. Lola Etiévant & Vivian Viallon, 2022. "On some limitations of probabilistic models for dimension‐reduction: Illustration in the case of probabilistic formulations of partial least squares," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 331-346, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:3:p:745-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.