IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i2p663-673.html
   My bibliography  Save this article

A Bayesian hidden Markov model for detecting differentially methylated regions

Author

Listed:
  • Tieming Ji

Abstract

Alterations in DNA methylation have been linked to the development and progression of many diseases. The bisulfite sequencing technique presents methylation profiles at base resolution. Count data on methylated and unmethylated reads provide information on the methylation level at each CpG site. As more bisulfite sequencing data become available, these data are increasingly needed to infer methylation aberrations in diseases. Automated and powerful algorithms also need to be developed to accurately identify differentially methylated regions between treatment groups. This study adopts a Bayesian approach using the hidden Markov model to account for inherent dependence in read count data. Given the expense of sequencing experiments, few replicates are available for each treatment group. A Bayesian approach that borrows information across an entire chromosome improves the reliability of statistical inferences. The proposed hidden Markov model considers location dependence among genomic loci by incorporating correlation structures as a function of genomic distance. An iterative algorithm based on expectation‐maximization is designed for parameter estimation. Methylation states are inferred by identifying the optimal sequence of latent states from observations. Real datasets and simulation studies that mimic the real datasets are used to illustrate the reliability and success of the proposed method.

Suggested Citation

  • Tieming Ji, 2019. "A Bayesian hidden Markov model for detecting differentially methylated regions," Biometrics, The International Biometric Society, vol. 75(2), pages 663-673, June.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:663-673
    DOI: 10.1111/biom.13000
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13000
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:663-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.