IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i2p463-474.html
   My bibliography  Save this article

Distribution‐free estimation of local growth rates around interval censored anchoring events

Author

Listed:
  • Chenghao Chu
  • Ying Zhang
  • Wanzhu Tu

Abstract

Biological processes are usually defined on timelines that are anchored by specific events. For example, cancer growth is typically measured by the change in tumor size from the time of oncogenesis. In the absence of such anchoring events, longitudinal assessments of the outcome lose their temporal reference. In this paper, we considered the estimation of local change rates in the outcomes when the anchoring events are interval‐censored. Viewing the subject‐specific anchoring event times as random variables from an unspecified distribution, we proposed a distribution‐free estimation method for the local growth rates around the unobserved anchoring events. We expressed the rate parameters as stochastic functionals of the anchoring time distribution and showed that under mild regularity conditions, consistent and asymptotically normal estimates of the rate parameters could be achieved, with a n convergence rate. We conducted a carefully designed simulation study to evaluate the finite sample performance of the method. To motivate and illustrate the use of the proposed method, we estimated the skeletal growth rates of male and female adolescents, before and after the unobserved pubertal growth spurt (PGS) times.

Suggested Citation

  • Chenghao Chu & Ying Zhang & Wanzhu Tu, 2019. "Distribution‐free estimation of local growth rates around interval censored anchoring events," Biometrics, The International Biometric Society, vol. 75(2), pages 463-474, June.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:463-474
    DOI: 10.1111/biom.13015
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13015
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:463-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.