IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i4p1282-1291.html
   My bibliography  Save this article

New robust statistical procedures for the polytomous logistic regression models

Author

Listed:
  • Elena Castilla
  • Abhik Ghosh
  • Nirian Martin
  • Leandro Pardo

Abstract

This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald‐type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data‐driven selection of the robustness tuning parameter is proposed with empirical justifications.

Suggested Citation

  • Elena Castilla & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "New robust statistical procedures for the polytomous logistic regression models," Biometrics, The International Biometric Society, vol. 74(4), pages 1282-1291, December.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1282-1291
    DOI: 10.1111/biom.12890
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12890
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miron, Julien & Poilane, Benjamin & Cantoni, Eva, 2022. "Robust polytomous logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    2. Castilla, Elena & Zografos, Konstantinos, 2022. "On distance-type Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:4:p:1282-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.