IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p673-684.html
   My bibliography  Save this article

Sample size determination for multilevel hierarchical designs using generalized linear mixed models

Author

Listed:
  • Anup Amatya
  • Dulal K. Bhaumik

Abstract

A unified statistical methodology of sample size determination is developed for hierarchical designs that are frequently used in many areas, particularly in medical and health research studies. The solid foundation of the proposed methodology opens a new horizon for power analysis in presence of various conditions. Important features such as joint significance testing, unequal allocations of clusters across intervention groups, and differential attrition rates over follow up time points are integrated to address some useful questions that investigators often encounter while conducting such studies. Proposed methodology is shown to perform well in terms of maintaining type I error rates and achieving the target power under various conditions. Proposed method is also shown to be robust with respect to violation of distributional assumptions of random†effects.

Suggested Citation

  • Anup Amatya & Dulal K. Bhaumik, 2018. "Sample size determination for multilevel hierarchical designs using generalized linear mixed models," Biometrics, The International Biometric Society, vol. 74(2), pages 673-684, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:673-684
    DOI: 10.1111/biom.12764
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12764
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heo, Moonseong & Xue, Xiaonan & Kim, Mimi Y., 2013. "Sample size requirements to detect an intervention by time interaction in longitudinal cluster randomized clinical trials with random slopes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 169-178.
    2. Anindya Roy & Dulal K. Bhaumik & Subhash Aryal & Robert D. Gibbons, 2007. "Sample Size Determination for Hierarchical Longitudinal Designs with Differential Attrition Rates," Biometrics, The International Biometric Society, vol. 63(3), pages 699-707, September.
    3. Steven Teerenstra & Bing Lu & John S. Preisser & Theo van Achterberg & George F. Borm, 2010. "Sample Size Considerations for GEE Analyses of Three-Level Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1230-1237, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kendra Davis‐Plourde & Monica Taljaard & Fan Li, 2023. "Sample size considerations for stepped wedge designs with subclusters," Biometrics, The International Biometric Society, vol. 79(1), pages 98-112, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satoshi Usami, 2017. "Generalized SAMPLE SIZE Determination Formulas for Investigating Contextual Effects by a Three-Level Random Intercept Model," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 133-157, March.
    2. Siyun Yang & Mirjam Moerbeek & Monica Taljaard & Fan Li, 2023. "Power analysis for cluster randomized trials with continuous coprimary endpoints," Biometrics, The International Biometric Society, vol. 79(2), pages 1293-1305, June.
    3. Moonseong Heo & Andrew C. Leon, 2008. "Statistical Power and Sample Size Requirements for Three Level Hierarchical Cluster Randomized Trials," Biometrics, The International Biometric Society, vol. 64(4), pages 1256-1262, December.
    4. Kendra Davis‐Plourde & Monica Taljaard & Fan Li, 2023. "Sample size considerations for stepped wedge designs with subclusters," Biometrics, The International Biometric Society, vol. 79(1), pages 98-112, March.
    5. Jia Liu & Zhan Zhao & Yongmin Mu & Xiaoping Zou & Dechun Zou & Jingbo Zhang & Shuo Chen & Lixin Tao & Xiuhua Guo, 2018. "Gender Differences in the Association between Serum Uric Acid and Prediabetes: A Six-Year Longitudinal Cohort Study," IJERPH, MDPI, vol. 15(7), pages 1-10, July.
    6. Heo, Moonseong & Xue, Xiaonan & Kim, Mimi Y., 2013. "Sample size requirements to detect an intervention by time interaction in longitudinal cluster randomized clinical trials with random slopes," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 169-178.
    7. Jamie Perin & John S. Preisser, 2017. "Alternating logistic regressions with improved finite sample properties," Biometrics, The International Biometric Society, vol. 73(2), pages 696-705, June.
    8. Hussein R. Al-Khalidi & Yili Hong & Thomas R. Fleming & Terry M. Therneau, 2011. "Insights on the Robust Variance Estimator under Recurrent-Events Model," Biometrics, The International Biometric Society, vol. 67(4), pages 1564-1572, December.
    9. S.P. Singh & S. Mukhopadhyay & A. Roy, 2015. "Comparison of three-level cluster randomized trials using quantile dispersion graphs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1792-1812, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:673-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.