IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i1p86-99.html
   My bibliography  Save this article

A local agreement pattern measure based on hazard functions for survival outcomes

Author

Listed:
  • Tian Dai
  • Ying Guo
  • Limin Peng
  • Amita K. Manatunga

Abstract

Assessing agreement is often of interest in biomedical and clinical research when measurements are obtained on the same subjects by different raters or methods. Most classical agreement methods have been focused on global summary statistics, which cannot be used to describe various local agreement patterns. The objective of this work is to study the local agreement pattern between two continuous measurements subject to censoring. In this article, we propose a new agreement measure based on bivariate hazard functions to characterize the local agreement pattern between two correlated survival outcomes. The proposed measure naturally accommodates censored observations, fully captures the dependence structure between bivariate survival times and provides detailed information on how the strength of agreement evolves over time. We develop a nonparametric estimation method for the proposed local agreement pattern measure and study theoretical properties including strong consistency and asymptotical normality. We then evaluate the performance of the estimator through simulation studies and illustrate the method using a prostate cancer data example.

Suggested Citation

  • Tian Dai & Ying Guo & Limin Peng & Amita K. Manatunga, 2018. "A local agreement pattern measure based on hazard functions for survival outcomes," Biometrics, The International Biometric Society, vol. 74(1), pages 86-99, March.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:86-99
    DOI: 10.1111/biom.12740
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12740
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nan, Bin & Lin, Xihong & Lisabeth, Lynda D. & Harlow, Sioban D., 2006. "Piecewise Constant Cross-Ratio Estimation for Association of Age at a Marker Event and Age at Menopause," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 65-77, March.
    2. Tianle Hu & Bin Nan & Xihong Lin & James M. Robins, 2011. "Time-dependent cross ratio estimation for bivariate failure times," Biometrika, Biometrika Trust, vol. 98(2), pages 341-354.
    3. Yu Cheng & Jason P. Fine & Michael R. Kosorok, 2009. "Nonparametric Association Analysis of Exchangeable Clustered Competing Risks Data," Biometrics, The International Biometric Society, vol. 65(2), pages 385-393, June.
    4. Fermanian, Jean-David, 1997. "Multivariate Hazard Rates under Random Censorship," Journal of Multivariate Analysis, Elsevier, vol. 62(2), pages 273-309, August.
    5. Ying Guo & Amita K. Manatunga, 2007. "Nonparametric Estimation of the Concordance Correlation Coefficient under Univariate Censoring," Biometrics, The International Biometric Society, vol. 63(1), pages 164-172, March.
    6. Agresti, Alan, 1989. "An agreement model with kappa as parameter," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 271-273, February.
    7. Ying Guo & Ruosha Li & Limin Peng & Amita K. Manatunga, 2013. "New Agreement Measures Based on Survival Processes," Biometrics, The International Biometric Society, vol. 69(4), pages 874-882, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruosha Li & Yu Cheng & Qingxia Chen & Jason Fine, 2017. "Quantile association for bivariate survival data," Biometrics, The International Biometric Society, vol. 73(2), pages 506-516, June.
    2. Tianle Hu & Bin Nan & Xihong Lin, 2019. "Proportional cross-ratio model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 480-506, July.
    3. Joanna H. Shih & Paul S. Albert, 2010. "Modeling Familial Association of Ages at Onset of Disease in the Presence of Competing Risk," Biometrics, The International Biometric Society, vol. 66(4), pages 1012-1023, December.
    4. Jing Ning & Karen Bandeen-Roche, 2014. "Estimation of time-dependent association for bivariate failure times in the presence of a competing risk," Biometrics, The International Biometric Society, vol. 70(1), pages 10-20, March.
    5. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    6. Christopher Withers & Saralees Nadarajah, 2014. "Non-parametric confidence intervals for covariance and correlation," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 283-306, October.
    7. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    8. Guangchao Feng, 2014. "Estimating intercoder reliability: a structural equation modeling approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2355-2369, July.
    9. Choudhary Pankaj K, 2010. "A Unified Approach for Nonparametric Evaluation of Agreement in Method Comparison Studies," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-26, June.
    10. Ying Guo & Amita K. Manatunga, 2009. "Measuring Agreement of Multivariate Discrete Survival Times Using a Modified Weighted Kappa Coefficient," Biometrics, The International Biometric Society, vol. 65(1), pages 125-134, March.
    11. Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
    12. Ying Guo & Ruosha Li & Limin Peng & Amita K. Manatunga, 2013. "New Agreement Measures Based on Survival Processes," Biometrics, The International Biometric Society, vol. 69(4), pages 874-882, December.
    13. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    14. Wei, Bo & Dai, Tian & Peng, Limin & Guo, Ying & Manatunga, Amita, 2020. "A new functional representation of broad sense agreement," Statistics & Probability Letters, Elsevier, vol. 158(C).
    15. Jeongyong Kim & Karen Bandeen-Roche, 2019. "Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 259-279, April.
    16. Lakhal Lajmi & Rivest Louis-Paul & Beaudoin David, 2009. "IPCW Estimator for Kendall's Tau under Bivariate Censoring," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-22, February.
    17. Guo, Ying & Manatunga, Amita K., 2010. "A note on assessing agreement for frailty models," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 527-533, April.
    18. Jose S. Romeo & Renate Meyer & Diego I. Gallardo, 2018. "Bayesian bivariate survival analysis using the power variance function copula," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 355-383, April.
    19. Ruosha Li & Xuelin Huang & Jorge Cortes, 2016. "Quantile residual life regression with longitudinal biomarker measurements for dynamic prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 755-773, November.
    20. Cheng Yu, 2009. "Modeling Cumulative Incidences of Dementia and Dementia-Free Death Using a Novel Three-Parameter Logistic Function," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:86-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.