IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i1p344-355.html
   My bibliography  Save this article

Detecting rare and common haplotype–environment interaction under uncertainty of gene–environment independence assumption

Author

Listed:
  • Yuan Zhang
  • Shili Lin
  • Swati Biswas

Abstract

No abstract is available for this item.

Suggested Citation

  • Yuan Zhang & Shili Lin & Swati Biswas, 2017. "Detecting rare and common haplotype–environment interaction under uncertainty of gene–environment independence assumption," Biometrics, The International Biometric Society, vol. 73(1), pages 344-355, March.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:344-355
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12567
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burkett, Kelly & Graham, Jinko & McNeney, Brad, 2006. "hapassoc: Software for Likelihood Inference of Trait Associations with SNP Haplotypes and Other Attributes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i02).
    2. Bhramar Mukherjee & Nilanjan Chatterjee, 2008. "Exploiting Gene‐Environment Independence for Analysis of Case–Control Studies: An Empirical Bayes‐Type Shrinkage Estimator to Trade‐Off between Bias and Efficiency," Biometrics, The International Biometric Society, vol. 64(3), pages 685-694, September.
    3. Swati Biswas & Shili Lin, 2012. "Logistic Bayesian LASSO for Identifying Association with Rare Haplotypes and Application to Age-Related Macular Degeneration," Biometrics, The International Biometric Society, vol. 68(2), pages 587-597, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinbo Chen & Dongyu Lin & Hagit Hochner, 2012. "Semiparametric Maximum Likelihood Methods for Analyzing Genetic and Environmental Effects with Case-Control Mother–Child Pair Data," Biometrics, The International Biometric Society, vol. 68(3), pages 869-877, September.
    2. Brisa N. Sánchez & Shan Kang & Bhramar Mukherjee, 2012. "A Latent Variable Approach to Study Gene–Environment Interactions in the Presence of Multiple Correlated Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 466-476, June.
    3. MacTavish, Robert & Bixby, Honor & Cavanaugh, Alicia & Agyei-Mensah, Samuel & Bawah, Ayaga & Owusu, George & Ezzati, Majid & Arku, Raphael & Robinson, Brian & Schmidt, Alexandra M. & Baumgartner, Jill, 2023. "Identifying deprived “slum” neighbourhoods in the Greater Accra Metropolitan Area of Ghana using census and remote sensing data," World Development, Elsevier, vol. 167(C).
    4. Bhramar Mukherjee & Jaeil Ahn & Stephen B. Gruber & Malay Ghosh & Nilanjan Chatterjee, 2010. "Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 934-948, September.
    5. Jason P. Estes & Bhramar Mukherjee & Jeremy M. G. Taylor, 2018. "Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 568-586, December.
    6. Tianying Wang & Alex Asher, 2021. "Improved Semiparametric Analysis of Polygenic Gene–Environment Interactions in Case–Control Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 386-401, December.
    7. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    8. Zhao, Jing Hua, 2007. "gap: Genetic Analysis Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i08).
    9. Swati Biswas & Shili Lin, 2012. "Logistic Bayesian LASSO for Identifying Association with Rare Haplotypes and Application to Age-Related Macular Degeneration," Biometrics, The International Biometric Society, vol. 68(2), pages 587-597, June.
    10. Sanjana Gupta & Robin E C Lee & James R Faeder, 2020. "Parallel Tempering with Lasso for model reduction in systems biology," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:1:p:344-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.