IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i3p855-864.html
   My bibliography  Save this article

Model assessment in dynamic treatment regimen estimation via double robustness

Author

Listed:
  • Michael P. Wallace
  • Erica E. M. Moodie
  • David A. Stephens

Abstract

type="main" xml:lang="en"> Dynamic treatment regimens (DTRs) recommend treatments based on evolving subject-level data. The optimal DTR is that which maximizes expected patient outcome and as such its identification is of primary interest in the personalized medicine setting. When analyzing data from observational studies using semi-parametric approaches, there are two primary components which can be modeled: the expected level of treatment and the expected outcome for a patient given their other covariates. In an effort to offer greater flexibility, the so-called doubly robust methods have been developed which offer consistent parameter estimators as long as at least one of these two models is correctly specified. However, in practice it can be difficult to be confident if this is the case. Using G-estimation as our example method, we demonstrate how the property of double robustness itself can be used to provide evidence that a specified model is or is not correct. This approach is illustrated through simulation studies as well as data from the Multicenter AIDS Cohort Study.

Suggested Citation

  • Michael P. Wallace & Erica E. M. Moodie & David A. Stephens, 2016. "Model assessment in dynamic treatment regimen estimation via double robustness," Biometrics, The International Biometric Society, vol. 72(3), pages 855-864, September.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:855-864
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    2. Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:855-864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.