Author
Listed:
- Chiung-Yu Huang
- Chenguang Wang
- Mei-Cheng Wang
Abstract
type="main" xml:lang="en"> This article considers nonparametric methods for studying recurrent disease and death with competing risks. We first point out that comparisons based on the well-known cumulative incidence function can be confounded by different prevalence rates of the competing events, and that comparisons of the conditional distribution of the survival time given the failure event type are more relevant for investigating the prognosis of different patterns of recurrence disease. We then propose nonparametric estimators for the conditional cumulative incidence function as well as the conditional bivariate cumulative incidence function for the bivariate gap times, that is, the time to disease recurrence and the residual lifetime after recurrence. To quantify the association between the two gap times in the competing risks setting, a modified Kendall's tau statistic is proposed. The proposed estimators for the conditional bivariate cumulative incidence distribution and the association measure account for the induced dependent censoring for the second gap time. Uniform consistency and weak convergence of the proposed estimators are established. Hypothesis testing procedures for two-sample comparisons are discussed. Numerical simulation studies with practical sample sizes are conducted to evaluate the performance of the proposed nonparametric estimators and tests. An application to data from a pancreatic cancer study is presented to illustrate the methods developed in this article.
Suggested Citation
Chiung-Yu Huang & Chenguang Wang & Mei-Cheng Wang, 2016.
"Nonparametric analysis of bivariate gap time with competing risks,"
Biometrics, The International Biometric Society, vol. 72(3), pages 780-790, September.
Handle:
RePEc:bla:biomet:v:72:y:2016:i:3:p:780-790
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:780-790. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.