IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i3p742-750.html
   My bibliography  Save this article

Estimating treatment effect in a proportional hazards model in randomized clinical trials with all-or-nothing compliance

Author

Listed:
  • Shuli Li
  • Robert J. Gray

Abstract

type="main" xml:lang="en"> We consider methods for estimating the treatment effect and/or the covariate by treatment interaction effect in a randomized clinical trial under noncompliance with time-to-event outcome. As in Cuzick et al. (2007), assuming that the patient population consists of three (possibly latent) subgroups based on treatment preference: the ambivalent group, the insisters, and the refusers, we estimate the effects among the ambivalent group. The parameters have causal interpretations under standard assumptions. The article contains two main contributions. First, we propose a weighted per-protocol (Wtd PP) estimator through incorporating time-varying weights in a proportional hazards model. In the second part of the article, under the model considered in Cuzick et al. (2007), we propose an EM algorithm to maximize a full likelihood (FL) as well as the pseudo likelihood (PL) considered in Cuzick et al. (2007). The E step of the algorithm involves computing the conditional expectation of a linear function of the latent membership, and the main advantage of the EM algorithm is that the risk parameters can be updated by fitting a weighted Cox model using standard software and the baseline hazard can be updated using closed-form solutions. Simulations show that the EM algorithm is computationally much more efficient than directly maximizing the observed likelihood. The main advantage of the Wtd PP approach is that it is more robust to model misspecifications among the insisters and refusers since the outcome model does not impose distributional assumptions among these two groups.

Suggested Citation

  • Shuli Li & Robert J. Gray, 2016. "Estimating treatment effect in a proportional hazards model in randomized clinical trials with all-or-nothing compliance," Biometrics, The International Biometric Society, vol. 72(3), pages 742-750, September.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:742-750
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    2. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:3:p:742-750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.