IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i2p596-605.html
   My bibliography  Save this article

A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data

Author

Listed:
  • Shuo Chen
  • F. DuBois Bowman
  • Helen S. Mayberg

Abstract

type="main" xml:lang="en"> We propose a novel Bayesian hierarchical model for brain imaging data that unifies voxel-level (the most localized unit of measure) and region-level brain connectivity analyses, and yields population-level inferences. Functional connectivity generally refers to associations in brain activity between distinct locations. The first level of our model summarizes brain connectivity for cross-region voxel pairs using a two-component mixture model consisting of connected and nonconnected voxels. We use the proportion of connected voxel pairs to define a new measure of connectivity strength, which reflects the breadth of between-region connectivity. Furthermore, we evaluate the impact of clinical covariates on connectivity between region-pairs at a population level. We perform parameter estimation using Markov chain Monte Carlo (MCMC) techniques, which can be executed quickly relative to the number of model parameters. We apply our method to resting-state functional magnetic resonance imaging (fMRI) data from 32 subjects with major depression and simulated data to demonstrate the properties of our method.

Suggested Citation

  • Shuo Chen & F. DuBois Bowman & Helen S. Mayberg, 2016. "A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data," Biometrics, The International Biometric Society, vol. 72(2), pages 596-605, June.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:596-605
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shuo & Kang, Jian & Xing, Yishi & Zhao, Yunpeng & Milton, Donald K., 2018. "Estimating large covariance matrix with network topology for high-dimensional biomedical data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 82-95.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:596-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.