IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i2p503-512.html
   My bibliography  Save this article

Tolerance bands for functional data

Author

Listed:
  • Lasitha N. Rathnayake
  • Pankaj K. Choudhary

Abstract

type="main" xml:lang="en"> Often the object of inference in biomedical applications is a range that brackets a given fraction of individual observations in a population. A classical estimate of this range for univariate measurements is a “tolerance interval.” This article develops its natural extension for functional measurements, a “tolerance band,” and proposes a methodology for constructing its pointwise and simultaneous versions that incorporates both sparse and dense functional data. Assuming that the measurements are observed with noise, the methodology uses functional principal component analysis in a mixed model framework to represent the measurements and employs bootstrapping to approximate the tolerance factors needed for the bands. The proposed bands also account for uncertainty in the principal components decomposition. Simulations show that the methodology has, generally, acceptable performance unless the data are quite sparse and unbalanced, in which case the bands may be somewhat liberal. The methodology is illustrated using two real datasets, a sparse dataset involving CD4 cell counts and a dense dataset involving core body temperatures.

Suggested Citation

  • Lasitha N. Rathnayake & Pankaj K. Choudhary, 2016. "Tolerance bands for functional data," Biometrics, The International Biometric Society, vol. 72(2), pages 503-512, June.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:503-512
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:503-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.