IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i2p414-421.html
   My bibliography  Save this article

Optimal Bayesian adaptive trials when treatment efficacy depends on biomarkers

Author

Listed:
  • Yifan Zhang
  • Lorenzo Trippa
  • Giovanni Parmigiani

Abstract

type="main" xml:lang="en"> Clinical biomarkers play an important role in precision medicine and are now extensively used in clinical trials, particularly in cancer. A response adaptive trial design enables researchers to use treatment results about earlier patients to aid in treatment decisions of later patients. Optimal adaptive trial designs have been developed without consideration of biomarkers. In this article, we describe the mathematical steps for computing optimal biomarker-integrated adaptive trial designs. These designs maximize the expected trial utility given any pre-specified utility function, though we focus here on maximizing patient responses within a given patient horizon. We describe the performance of the optimal design in different scenarios. We compare it to Bayesian Adaptive Randomization (BAR), which is emerging as a practical approach to develop adaptive trials. The difference in expected utility between BAR and optimal designs is smallest when the biomarker subgroups are highly imbalanced. We also compare BAR, a frequentist play-the-winner rule with integrated biomarkers and a marker-stratified balanced randomization design (BR). We show that, in contrasting two treatments, BR achieves a nearly optimal expected utility when the patient horizon is relatively large. Our work provides novel theoretical solution, as well as an absolute benchmark for the evaluation of trial designs in personalized medicine.

Suggested Citation

  • Yifan Zhang & Lorenzo Trippa & Giovanni Parmigiani, 2016. "Optimal Bayesian adaptive trials when treatment efficacy depends on biomarkers," Biometrics, The International Biometric Society, vol. 72(2), pages 414-421, June.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:414-421
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:414-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.