IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i2p344-353.html
   My bibliography  Save this article

Alive SMC-super-2: Bayesian model selection for low-count time series models with intractable likelihoods

Author

Listed:
  • Christopher C. Drovandi
  • Roy A. McCutchan

Abstract

type="main" xml:lang="en"> In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-approximate algorithm, which we refer to as alive SMC 2 . The advantages of this approach over competing methods are that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo, and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series, and the cumulative number of prion disease cases in mule deer.

Suggested Citation

  • Christopher C. Drovandi & Roy A. McCutchan, 2016. "Alive SMC-super-2: Bayesian model selection for low-count time series models with intractable likelihoods," Biometrics, The International Biometric Society, vol. 72(2), pages 344-353, June.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:344-353
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:2:p:344-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.