IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p30-38.html
   My bibliography  Save this article

Augmented case-only designs for randomized clinical trials with failure time endpoints

Author

Listed:
  • James Y. Dai
  • Xinyi Cindy Zhang
  • Ching-Yun Wang
  • Charles Kooperberg

Abstract

type="main" xml:lang="en"> Under suitable assumptions and by exploiting the independence between inherited genetic susceptibility and treatment assignment, the case-only design yields efficient estimates for subgroup treatment effects and gene-treatment interaction in a Cox model. However it cannot provide estimates of the genetic main effect and baseline hazards, that are necessary to compute the absolute disease risk. For two-arm, placebo-controlled trials with rare failure time endpoints, we consider augmenting the case-only design with random samples of controls from both arms, as in the classical case-cohort sampling scheme, or with a random sample of controls from the active treatment arm only. The latter design is motivated by vaccine trials for cost-effective use of resources and specimens so that host genetics and vaccine-induced immune responses can be studied simultaneously in a bigger set of participants. We show that these designs can identify all parameters in a Cox model and that the efficient case-only estimator can be incorporated in a two-step plug-in procedure. Results in simulations and a data example suggest that incorporating case-only estimators in the classical case-cohort design improves the precision of all estimated parameters; sampling controls only in the active treatment arm attains a similar level of efficiency.

Suggested Citation

  • James Y. Dai & Xinyi Cindy Zhang & Ching-Yun Wang & Charles Kooperberg, 2016. "Augmented case-only designs for randomized clinical trials with failure time endpoints," Biometrics, The International Biometric Society, vol. 72(1), pages 30-38, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:30-38
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jixiong Wang & Ashish Patel & James M.S. Wason & Paul J. Newcombe, 2022. "Two‐stage penalized regression screening to detect biomarker–treatment interactions in randomized clinical trials," Biometrics, The International Biometric Society, vol. 78(1), pages 141-150, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:30-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.