IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p253-261.html
   My bibliography  Save this article

An approximate marginal logistic distribution for the analysis of longitudinal ordinal data

Author

Listed:
  • Nazanin Nooraee
  • Fentaw Abegaz
  • Johan Ormel
  • Ernst Wit
  • Edwin R van den Heuvel

Abstract

type="main" xml:lang="en"> Subject-specific and marginal models have been developed for the analysis of longitudinal ordinal data. Subject-specific models often lack a population-average interpretation of the model parameters due to the conditional formulation of random intercepts and slopes. Marginal models frequently lack an underlying distribution for ordinal data, in particular when generalized estimating equations are applied. To overcome these issues, latent variable models underneath the ordinal outcomes with a multivariate logistic distribution can be applied. In this article, we extend the work of O'Brien and Dunson (2004), who studied the multivariate t-distribution with marginal logistic distributions. We use maximum likelihood, instead of a Bayesian approach, and incorporated covariates in the correlation structure, in addition to the mean model. We compared our method with GEE and demonstrated that it performs better than GEE with respect to the fixed effect parameter estimation when the latent variables have an approximately elliptical distribution, and at least as good as GEE for other types of latent variable distributions.

Suggested Citation

  • Nazanin Nooraee & Fentaw Abegaz & Johan Ormel & Ernst Wit & Edwin R van den Heuvel, 2016. "An approximate marginal logistic distribution for the analysis of longitudinal ordinal data," Biometrics, The International Biometric Society, vol. 72(1), pages 253-261, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:253-261
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rainer Hirk & Kurt Hornik & Laura Vana, 2019. "Multivariate ordinal regression models: an analysis of corporate credit ratings," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 507-539, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:253-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.